精英家教网 > 高中数学 > 题目详情
10.在四棱锥P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是边长为2的等边三角形,设P在底面ABCD的射影为O.
(1)求证:O是AD中点;
(2)证明:BC⊥PB;
(3)求二面角A-PB-C的余弦值.

分析 (1)证明PO⊥底面ABCD,说明点O为△ABD的外心,然后判断点O为AD中点.
(2)证明PO⊥面ABCD,推出BC⊥PO,证明CB⊥BO,BC⊥PO,证明CB⊥面PBO,推出BC⊥PB.
(3)以点O为原点,以OB,OD,OP所在射线为x轴,y轴,z轴建系,求出相关点的坐标,平面PAB的法向量,平面PBC的法向量,利用空间向量的数量积求解所以该二面角的余弦值即可.

解答 解:(1)证明:∵△PAB和△PBD都是等边三角形,
∴PA=PB=PD,
又∵PO⊥底面ABCD,
∴OA=OB=OD,
则点O为△ABD的外心,又因为△ABD是直角三角形,
∴点O为AD中点.
(2)证明:由(1)知,点P在底面的射影为点O,点O为AD中点,
于是PO⊥面ABCD,
∴BC⊥PO,
∵在Rt△ABD中,BD=BA,OB⊥AD,
∴$∠DBO=∠ODB=\frac{π}{4}$,
又$AB\underline{\underline∥}CD$,∴$∠CBD=\frac{π}{4}$,
从而$∠CBO=\frac{π}{2}$即CB⊥BO,
由BC⊥PO,CB⊥BO得CB⊥面PBO,
∴BC⊥PB.
(3)以点O为原点,以OB,OD,OP所在射线为x轴,y轴,z轴建系如图,

∵AB=2,则O(0,0,0),$A({0,-\sqrt{2},0})$,$B({\sqrt{2},O,O})$,$C({\sqrt{2},2\sqrt{2},0})$,$D({0,\sqrt{2},0})$,$P({0,0,\sqrt{2}})$,$\overrightarrow{BA}=({-\sqrt{2},-\sqrt{2},0})$,$\overrightarrow{BP}=({-\sqrt{2},0,\sqrt{2}})$,$\overrightarrow{BC}=({0,2\sqrt{2},0})$,
设面PAB的法向量为$\overrightarrow n=({x,y,z})$,则$\overrightarrow n•\overrightarrow{BA}=0$,$\overrightarrow n•\overrightarrow{BP}=0$,得$-\sqrt{2}x-\sqrt{2}y=0$,$-\sqrt{2}x+\sqrt{2}z=0$,
取x=1,得y=-1,z=1,
故$\overrightarrow n=({1,-1,1})$.
设面PBC的法向量为$\overrightarrow m=({r,s,t})$,则$\overrightarrow m•\overrightarrow{BC}=0$,$\overrightarrow m•\overrightarrow{BP}=0$,得s=0,$-\sqrt{2}r+\sqrt{2}t=0$,
取r=1,则t=1,故$\overrightarrow m=({1,0,1})$,
于是$cos<\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{\sqrt{6}}}{3}$,
由图观察知A-PB-C为钝二面角,
所以该二面角的余弦值为$-\frac{{\sqrt{6}}}{3}$.

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及逻辑推理能力计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$,O为坐标原点,M为长轴的一个端点,若在椭圆上存在点N,使ON⊥MN,则离心率e的取值范围为(  )
A.$(\frac{{\sqrt{2}}}{2},1)$B.$(0,\frac{{\sqrt{2}}}{2})$C.$(\frac{{\sqrt{3}}}{2},1)$D.$(0,\frac{{\sqrt{3}}}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=axex-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128…).
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)仅有一个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,若输入p=2017,则输出i的值为(  )
A.335B.336C.337D.338

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点M(3,2)到拋物线C:y=ax2(a>0)准线的距离为4,F为拋物线的焦点,点N(l,l),当点P在直线l:x-y=2上运动时,$\frac{|PN|-1}{|PF|}$的最小值为(  )
A.$\frac{3-2\sqrt{2}}{8}$B.$\frac{2-\sqrt{2}}{4}$C.$\frac{5-2\sqrt{2}}{8}$D.$\frac{5-2\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.
(Ⅰ)求证:平面DPC⊥平面BPC;
(Ⅱ)求二面角C-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在锐角△ABC中,$\overrightarrow{CM}$=3$\overrightarrow{MB}$,$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则$\frac{x}{y}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.工人在悬挂如图所示的一个正六边形装饰品时,需要固定六个位置上的螺丝,首先随意拧紧一个螺丝,接着拧紧距离它最远的第二个螺丝,再随意拧紧第三个螺丝,接着拧紧距离第三个螺丝最远的第四个螺丝,第五个和第六个以此类推,则不同的固定方式有48种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线被圆(x-c)2+y2=4a2截得弦长为2b(其中c为双曲线的半焦距),则该双曲线的离心率为(  )
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

同步练习册答案