精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=axex-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128…).
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)仅有一个极值点,求a的取值范围.

分析 (1)根据导数和函数的单调性的关系即可求出,
(2)先求导,再令f'(x)=0得到x=-1或aex-2a+2=0(*),根据aex-2a+2=0(*)无解即可求出a的范围.

解答 解:(1)由题知,f(x)=-xex+2(x+1)2
f'(x)=-ex-xex+4(x+1)=(x+1)(4-ex),
由f'(x)=0得到x=-1或x=ln4,
而当x<ln4时,(4-ex)>0,x>ln4时,(4-ex)<0,列表得:

x(-∞,-1)-1(-1,ln4)ln4(ln4,+∞)
f'(x)-0+0-
f(x)极大值极小值
所以,此时f(x)的减区间为(-∞,-1),(ln4,+∞),增区间为(-1,ln4);
(2)f'(x)=aex+axex-2(a-1)(x+1)=(x+1)(aex-2a+2),
由f'(x)=0得到x=-1或aex-2a+2=0(*)
由于f(x)仅有一个极值点,
关于x的方程(*)必无解,
①当a=0时,(*)无解,符合题意,
②当a≠0时,由(*)得${e^x}=\frac{2a-2}{a}$,故由$\frac{2a-2}{a}≤0$得0<a≤1,
由于这两种情况都有,当x<-1时,f'(x)<0,于是f(x)为减函数,
当x>-1时,f'(x)>0,于是f(x)为增函数,
∴仅x=-1为f(x)的极值点,
综上可得a的取值范围是[0,1].

点评 本题考查了导数和函数的单调性和关系和一级函数的极值的问题,考查了分类讨论的思想,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知公差不为0的等差数列{an},若a2+a4=10,且a1、a2、a5成等比数列,则a1=1,an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)对任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的图象关于点(-1,0)对称,且f(1)=2,则f(2009)=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近(  )
A.3cmB.4cmC.5cmD.6cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线ax+by=1(a,b都是正实数)与圆x2+y2=1相交于A,B两点,当△AOB(O是坐标原点)的面积为$\frac{1}{2}$,a+b的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,BC∥AD,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,点E在棱PD上(点E异于端点),且$\overrightarrow{PE}=λ\overrightarrow{PD}$.
(1)当$λ=\frac{2}{3}$时,求异面直线PC与AE所成角的余弦值;
(2)若二面角P-AC-E的余弦值为$\frac{\sqrt{3}}{3}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=ex-ax,a是常数.
(Ⅰ)若a=1,且曲线y=f(x)的切线l经过坐标原点(0,0),求该切线的方程;
(Ⅱ)讨论f(x)的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在四棱锥P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是边长为2的等边三角形,设P在底面ABCD的射影为O.
(1)求证:O是AD中点;
(2)证明:BC⊥PB;
(3)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在三棱锥P-ABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求二面角C-PA-B的余弦值.

查看答案和解析>>

同步练习册答案