精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow a$=(-1,-2),$\overrightarrow b$=(1,λ),若$\overrightarrow a$,$\overrightarrow b$的夹角为钝角,则λ的取值范围是(  )
A.(-∞,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,2)∪(2,+∞)C.(-$\frac{1}{2}$,+∞)D.(2,+∞)

分析 由题意可得$\overrightarrow{a}•\overrightarrow{b}$=-1-2λ<0,且$\frac{-1}{1}$≠$\frac{-2}{λ}$,由此求得λ的取值范围.

解答 解:∵向量$\overrightarrow a$=(-1,-2),$\overrightarrow b$=(1,λ),
若$\overrightarrow a$,$\overrightarrow b$的夹角为钝角,则$\overrightarrow{a}•\overrightarrow{b}$=-1-2λ<0,且$\frac{-1}{1}$≠$\frac{-2}{λ}$,
求得λ>-$\frac{1}{2}$且λ≠2,
故选:B.

点评 本题主要考查两个向量的数量积的运算,两个向量共线的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.与y=|x|为同一函数的是(  )
A.y=($\sqrt{x}$)2B.y=a${\;}^{{{log}_a}x}}$C.y=$\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}$D.y=$\sqrt{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2+2t}\\{y=1-t}\end{array}\right.$(t为参数),椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),试在椭圆C上求一点P,使得点P到直线l的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2($\frac{π}{6}-\frac{x}{2}$)-cos2($\frac{π}{3}+\frac{x}{2}$).
(1)求f(x)在x∈[0,π]上的单调区间;
(2)设α,β∈(0,$\frac{π}{2}$),f(α)=1,f(β)=$\frac{{\sqrt{6}}}{4}$,求f(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知随机变量X~N(0,σ2),且P(X>2)=0.4,则P(-2≤X≤0)=(  )
A.0.1B.0.2C.0.4D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知i为虚数单位,则复数z=i(1+2i)的模为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直角坐标P(-1,1)的极坐标为(ρ>0,0<θ<π)$(\sqrt{2},\frac{3π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点P(2,3)且平行于直线2x+y-5=0的直线的方程为(  )
A.2x+y-7=0B.2x-y-7=0C.2x+y+7=0D.2x-y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,如果lga-lgc=lg(sinB)=-lg$\sqrt{2}$,且B为锐角,试求A,B,C.

查看答案和解析>>

同步练习册答案