精英家教网 > 高中数学 > 题目详情
如图所示为y=f′(x)的图象,则下列判断正确的是(  )
①f(x)在(-∞,1)上是增函数;
②x=-1是f(x)的极小值点;
③f(x)在(2,4)上是减函数,在(-1,2)上是增函数;
④x=2是f(x)的极小值点.
A、①②③B、①③④
C、③④D、②③
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:通过图象,结合导函数的符号,逐一排除,从而选出正确选项.
解答: 解:x<-1时,f′(x)<0,∴f(x)是增函数,故①错误,②正确,
-1<x<2时,f′(x)>0,f(x)是增函数,2<x<4时,f′(x)<0,f(x)是减函数,故③正确,
x=2是极大值点,故④错误,
故选:D.
点评:本题考察了函数的单调性,导数的应用,读图的能力,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是(  )
A、若m∥α,n∥α,则m∥n
B、若α⊥β,α⊥γ,则β∥γ
C、若m∥α,m∥β,则α∥β
D、若m⊥α,m⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式sin(π+x)>0成立的x的取值范围为(  )
A、(0,π)
B、(π,2π)
C、(2kπ,2kπ+π)(k∈Z)
D、(2kπ+π,2kπ+2π)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

由直线y=0,x=e,y=2x及曲线y=
2
x
所围成的封闭的图形的面积为(  )
A、3
B、3+2ln2
C、e2-3
D、e

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足z=1-2i,则z的虚部为(  )
A、-2iB、2iC、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+3,x≤1
-x2+2x+3,x>1
,则函数g(x)=f(x)-ex的零点个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的零点与g(x)=lnx+2x-8的零点之差的绝对值不超过0.5,则f(x)可以是(  )
A、f(x)=3x-6
B、f(x)=(x-4)2
C、f(x)=ex-1-1
D、f(x)=ln(x-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a-x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.
(1)判断函数f(x)=3x是否为“(a,b)型函数”,并说明理由;
(2)已知函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2-4x+4,当x∈[1,2],求函数h(x)=(x+2)g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

马航MH370失踪牵动全球人的眼光,某卫星发现海上A处北偏东45°方向,距离A点100(
3
-1)海里的B处有一疑是漂浮物,在A处北偏西75°方向,距离A点200海里的C处我方“海巡1号”奉命以10
3
海里/小时的速度去捕捞此漂浮物,而漂浮物顺洋流正以10海里/小时的速度,以B处向北偏东30°方向漂流.问海巡1号沿什么方向行驶才能最快到达疑是漂浮物出,并求出所需时间.

查看答案和解析>>

同步练习册答案