精英家教网 > 高中数学 > 题目详情
12.(1)证明:垂直同一平面的两直线平行;
(2)已知l1⊥平面α,l2⊥平面α,且l1,l2与α的交点分别为O1,O2,A、B分别在l1,l2上,且AO1=3,BO2=1,O1O2=2,求|AB|.

分析 (1)可用反证法证明:垂直于同一平面的两条直线平行.设直线a、b都与平面α垂直,并假设a、b不平行,再作出辅助线和辅助平面,结合线面垂直的定义和平行线的性质,可以证出经过空间一点有两条直线与已知直线垂直,得到与公理矛盾,所以原假设不成立,从而得到原命题是真命题;
(2)由(1)知,l1∥l2,过B作BC⊥AO1,利用勾股定理可得结论.

解答 (1)证明:设直线a、b都与平面α垂直,可以用反证法证明a、b必定是平行直线
假设a、b不平行,过直线b与平面α的交点作直线d,使d∥a
∴直线d与直线b是相交直线,设它们确定平面β,且β∩α=c
∵b⊥α,c?α,∴b⊥c.同理可得a⊥c,
又∵d∥a,∴d⊥c
这样经过一点作出两条直线b、d都与直线c垂直,这是不可能的
∴假设不成立,故原命题是真命题;
(2)解:由(1)知,l1∥l2,过B作BC⊥AO1,则BC=O1O2=2,AC=2,
∴|AB|=2$\sqrt{2}$.

点评 考查了反证法的思路和线面垂直的定义等知识点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知各项不为0的等差数列{an}满足a3-2a62+3a7=0,数列{bn}是等比数列,且b6=a6,则b1b7b10等于(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(x-1)ex-ax2
(Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)当2<a<3时,求函数f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{x}{m(x+2)}$,方程f(x)=x有唯一解,数列{an}满足f(an)=an+1(n∈N*),且f(1)=$\frac{2}{3}$数列{bn}满足bn=$\frac{{4-3{a_n}}}{a_n}({n∈{N^*}})$.
(Ⅰ)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(Ⅱ)数列{cn}满足cn=$\frac{1}{{{b_n}•{b_{n+1}}}}({n∈{N^*}})$,其前n项和为Sn,若存在n∈N*,使kSn=$\frac{1}{2}n+4({k∈R})$成立,求k的最小值;
(Ⅲ)若对任意n∈N*,使不等式$\frac{t}{{({\frac{1}{b_1}+1})({\frac{1}{b_2}+1})…({\frac{1}{b_n}+1})}}≤\frac{1}{{\sqrt{2n+1}}}$成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图是某市11月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200,表示空气质量重度污染,该市某校准备举行为期3天(连续3天)的运动会,在11月1日至11月13日任选一天开幕
(Ⅰ)求运动会期间至少两天空气质量优良的概率;
(Ⅱ)记运动会期间,空气质量优良的天数为ξ,求随机变量ξ的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$=(x-1,2),$\overrightarrow{b}$=(4,y)(x,y为正),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则xy的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知φ∈R,则“φ=0”是“f(x)=sin(2x+φ)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面内,曲线C上存在点P,使点P到点A(3,0),B(-3,0)的距离之和为10,则称曲线C为“有用曲线”.以下曲线不是“有用曲线”的是(  )
A.x+y=5B.x2+y2=9C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1D.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z=$\frac{2i}{1-i}$-1,其中i为虚数单位,则z的模为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案