精英家教网 > 高中数学 > 题目详情
19.设△ABC的内角A,B,C所对的边长分别为a,b,c,已知a=1,b=$\sqrt{3},A=\frac{π}{6}$,则边长c=2或1..

分析 由正弦定理可求sinB=$\frac{\sqrt{3}}{2}$,结合范围0<B<π,可得B,从而可求C,由正弦定理即可得解.

解答 解:∵由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×sin\frac{π}{6}}{1}$=$\frac{\sqrt{3}}{2}$,
又∵0<B<π,
∴B=$\frac{π}{3}$或$\frac{2π}{3}$,解得:C=π-A-B=$\frac{π}{2}$或$\frac{π}{6}$.
∴c=$\frac{asinC}{sinA}$=$\frac{1×sinC}{\frac{1}{2}}$=2sinC=2或1.
故答案为:2或1.

点评 本题主要考查了正弦定理的应用,考查了三角形的边角关系的转化,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知圆的方程为(x-1)2+(y+1)2=4,求过圆外一点P(3,2)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,集合A={x∈R|-2≤2x≤1},集合B={x∈R||x|<1},则CU(A∩B)=(  )
A.(-∞,-1]∪($\frac{1}{2}$,+∞)B.(-1,$\frac{1}{2}$]C.(-∞,-1)∪[-$\frac{1}{2}$,+∞)D.(-1,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一已知函数f(x)=cos(ωx+φ-$\frac{π}{2}$)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则y=f(x+$\frac{π}{6}$)取得最小值时x的集合为(  )
A.{x|x=kπ-$\frac{π}{6}$,k∈z}B.{x|x=kπ-$\frac{π}{3}$,k∈z}C.{x|x=2kπ-$\frac{π}{6}$,k∈z}}D.{x|x=2kπ-$\frac{π}{3}$,k∈z}}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆O的半径为r,A为平面上一点,|OA|=a,a≠r,P是圆上任意一点,线段AP的垂直平分线与直线OP相交于点Q,以OA的中点为原点,OA所在直线为x轴建立平面直角坐标系,若Q点轨迹的离心率为$\sqrt{5}$,则(  )
A.a=$\sqrt{5}$rB.a=2rC.a=$\sqrt{3}$rD.a=$\sqrt{2}$r

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求CF与平面BDEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=(2x-$\frac{1}{{2}^{x}}$)x,则下列结论中正确的是(  )
A.若-3≤m<n,则f(m)<f(n)B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2D.若f(m)<f(n),则m3<n3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,sinA:sinC=3:4,∠B=120°,S△ABC=12$\sqrt{3}$,求a,b,c三边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在三棱柱ABC-A1B1C1中,侧棱BB1⊥底面A1B1C1,D为AC 的中点,A1B1=BB1=2,A1C1=BC1,∠A1C1B=60°.
(Ⅰ)求证:AB1∥平面BDC1
(Ⅱ)求多面体A1B1C1DBA的体积.

查看答案和解析>>

同步练习册答案