精英家教网 > 高中数学 > 题目详情
若关于x的方程x2-ax+a2-4=0有两个正实数根,求a的取值范围.
考点:一元二次方程的根的分布与系数的关系
专题:函数的性质及应用
分析:根据方程x2-ax+a2-4=0有两个正实数根,利用根与系数之间的关系,建立不等式条件即可求解.
解答: 解:∵方程x2-ax+a2-4=0有两个正实数根,不妨设为x1,x2,则x1>0,x2>0
∴满足条件
△=a2-4(a2-4)≥0
x1x2=a2-4>0
x1+x2=a>0

a2
16
3
a>2或a<-2
a>0

解得2<a≤
4
3
3

即a的取值范围是(2,
4
3
3
].
点评:本题主要考查一元二次方程根的取值的应用,利用根与系数之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x-4+log2x的零点所在的区间是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0).
(1)求g(x)的表达式;
(2)设1<m≤e,H(x)=f(x)-(m+1)x.证明:对任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,
3
sin2x),
n
=(cosx,1),函数f(x)=
m
n

①求f(x)的解析式和函数图象的对称轴方程;
②在△ABC中,a、b、c分别为A、B、C的对边,满足a+c≥2b,求f(B)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a2-3a+1=0,求
(a3+a-3)(a3-a-3)
(a4+a-4+1)(a-a-1)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲盒中有2个红球和2个白球,乙盒中有2个红球和3个白球,将甲、乙两盒任意交换一个球.
(Ⅰ)求交换后甲盒恰有2个红球的概率;
(Ⅱ)求交换后甲盒红球数ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是直线l上不同的三点,O为直线l外任一点,向量
OA
OB
OC
满足
OA
=[f(x)+2f′(1)]•
OB
-1n(x+1)
OC

(1)求函数y=f(x)的表达式;
(2)若不等式
1
2
x2≤f(x2)+m2-2bm-3对x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mx3-3x+n,m,n∈R
(Ⅰ)已知f(x)在区间(m,+∞)上递增,求实数m的取值范围;
(Ⅱ)存在实数m,使得当x∈[0,n-2]时,2≤f(x)≤6恒成立,求n的最大值及此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,根据图中数据可得该几何体的表面积是
 

查看答案和解析>>

同步练习册答案