精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,四边形CDEF为正方形,ABCD为等腰梯形,AB∥CD,BD=2
3
,AB=2AD=4,AE⊥BD.
(Ⅰ)求证:BD⊥平面ADE;
(Ⅱ)点M为BD的中点,证明:BF∥平面ECM.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(Ⅰ)由已知及勾股定理可证明BD⊥AD,又AE⊥BD,由AD,AE?平面ADE,AD∩AE=A,即可证明BD⊥平面ADE.
(Ⅱ)连接DF与EC交于点N,则N为DF的中点,可证明MN∥BF,又MN?平面EMC,BF?平面EMC,即可判定BF∥平面ECM.
解答: 证明:(Ⅰ)∵BD=2
3
,AB=2AD=4
∴BD2+AD2=AB2…2分
∴BD⊥AD,…3分
又AE⊥BD,…4分
AD,AE?平面ADE,AD∩AE=A
∴BD⊥平面ADE…6分
(Ⅱ)连接DF与EC交于点N,则N为DF的中点…8分
∵M是BD的中点,
∴MN∥BF,…10分
又MN?平面EMC,BF?平面EMC,
∴BF∥平面ECM…12分
点评:本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学科考试共有100道单项选择题,有甲、乙两种计分法.某学生有a道题答对,b道题答错,c道题未作答,则甲计分法的得分为X=a-
b
4
,乙计分法的得分为Y=a+
c
5
.某班50名学生参加了这科考试,现有如下结论:
①同一学生的X分数不可能大于Y分数;
②任意两个学生X分数之差的绝对值不可能大于Y分数之差的绝对值;
③用X分数将全班排名次的结果与用Y分数将全班排名次的结果是完全相同的;
④X分数与Y分数是正先关的.
其中正确的有
 
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=1和两点A(-a,1),B(a,-1),且a>0,若圆C上存在点P,使得∠APB=90°,则a的最大值为.(  )
A、6
B、
35
C、2
6
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)求C的参数方程;
(Ⅱ)若点P(x,y)在曲线C上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},对于任意的t∈[1,2],函数f(x)=ax3+(m+
1
2
)x2-cx在区间(t,3)上总不是单调函数,m的取什值范围是(  )
A、-
14
3
<m<-3
B、-3<m<-1
C、-
14
3
<m<-1
D、-3<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R则f(x)在闭区间[-
π
4
π
4
]上的最大值和最小值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
700(sin15°+sin45°)
sin120°

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,已知a1=2,且数列{
Sn
}也为等差数列,则a13=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,扇形AOB的半径OA=2,∠AOB=
π
2
,在OA的延长线上有一动点C,过C作CD与
AB
相切于点E,且与过点B所作的OB的垂线交CE于点D,问当点C在什么位置时,直角梯形OCDB面积最小?

查看答案和解析>>

同步练习册答案