精英家教网 > 高中数学 > 题目详情
5.在等比数列{an}中,若a3=3,a7=6,则a11=12.

分析 利用等比数列的性质即可得出.

解答 解:由题意设等比数列{an}的公比为q,
则可得a7=a3•q4,即6=3q4
∴q4=2,
∴a11=a7•q4=6×2=12,
故答案为:12.

点评 本题考查了等比数列的通项公式与性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x+1)lnx-a(x+1)(a∈R),求函数g(x)=f′(x)-$\frac{a}{x}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=-$\sqrt{2}$${x}^{\frac{3}{4}}$+alnx-4(a∈R),函数f(x)的图象在点P(1,f(1))处的切线的倾斜角为θ,若sinθ=$\frac{1}{3}$,则a=$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A(x1,y1),B(x2,y2),C(x0,y0).
(1)用x1,x2,y1,y2表示AB之间的距离,
(2)若x1=2,x2=0,y1=0,y2=4,点C在AB的延长线上,满足AB=$\frac{1}{2}$AC,求C点坐标,
(3)若x1=2cos(x-$\frac{π}{6}$),x2=1,y1=0,y2=sin(x-$\frac{π}{6}$),f(x)=|$\overrightarrow{AB}$|2,若对任意x∈[0,$\frac{π}{2}$],都有f(x)∈[m,n],求n-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某同学将全班某次数学考试成绩整理成频率分布直方图后,并将每个小矩形上方线段的中点连接起来得到频率分布折线图(如图所示),据此估计此次考试成绩的众数是(  )
A.100B.110C.115D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,对于任意点M,点M关于A点的对称点为S,点S关于B点的对称点为N.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{MN}$;
(2)用|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{MN}$|∈[2$\sqrt{3}$,2$\sqrt{7}$],求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设P是△ABC所在平面内的一点,$\overrightarrow{BA}$+$\overrightarrow{BC}$=$\overrightarrow{BQ}$,其中P是线段BQ的中点,则(  )
A.$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{0}$B.$\overrightarrow{PC}$+$\overrightarrow{PA}$=$\overrightarrow{0}$C.$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$D.$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数的奇偶性
(1)f(x)=cos($\frac{1}{2}$x-$\frac{3π}{2}$);
(2)f(x)=|sinx|+cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的左焦点为F1,P为椭圆上的动点,M是圆${x^2}+{({y-2\sqrt{5}})^2}=1$上的动点,则|PM|+|PF1|的最大值是17.

查看答案和解析>>

同步练习册答案