精英家教网 > 高中数学 > 题目详情
20.某同学将全班某次数学考试成绩整理成频率分布直方图后,并将每个小矩形上方线段的中点连接起来得到频率分布折线图(如图所示),据此估计此次考试成绩的众数是(  )
A.100B.110C.115D.120

分析 根据频率分布折线图中折线的最高点对应的数值,估计此次考试成绩的众数是什么.

解答 解:根据频率分布折线图,得;
折线的最高点对应的值是115,
据此估计此次考试成绩的众数是115.
故选:C.

点评 本题考查了利用频率分布折线图估计众数的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ≤π)的图象如图所示,则函数f(x)的解析式为2sin($\frac{11}{6}$x-$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=a1nx+$\frac{1-a}{2}$x2-x(a∈R且a≠1),若?x0∈[1,+∞),使得f(x0)<$\frac{a}{a-1}$,则a的取值范围为(  )
A.(-$\sqrt{2}-$1,$\sqrt{2}-1$)B.(-$\sqrt{2}-1$,1)C.(1,+∞)D.(-$\sqrt{2}-1$,$\sqrt{2}-1$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数g(x)=ex+2x-a(a∈R,e为自然对数底数),定义在R上函数f(x)满足:f(-x)+f(x)=x2,且当x<0时,f′(x)<x,若存在x0∈{x|f(x)+$\frac{1}{2}$≥f(1-x)+x}.使g[g(x0)]=x0,则实数a的取值范围为a≤$\sqrt{e}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,正四棱柱ABCD-A1B1C1D1中,AB=λAA1,O是底面ABCD的中心,求λ的值,使得A1O⊥面BDC1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等比数列{an}中,若a3=3,a7=6,则a11=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有下列结论,正确的序号为③④.
①存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$;
②存在区间(a,b),使y=cosx为减函数且sinx<0;
③函数y=4sin(2x+$\frac{π}{3}$)的图象关于点(-$\frac{π}{6}$,0)对称;
④函数y=cos2x+sin($\frac{π}{2}$-x)是偶函数,且既有最大值,又有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC中,tanB=1,tanC=2,b=100,则a=$60\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:x2+3y2=4.
(I)求椭圆的离心率;
(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.

查看答案和解析>>

同步练习册答案