分析 由题意得到关于a,b的不等式组,由不等式组作出平面区域,由三角形面积得答案.
解答
解:由题意可知:$\left\{\begin{array}{l}{-2b≤2}\\{2a+2b≤1}\\{-2a+2b≤2}\end{array}\right.$,即$\left\{\begin{array}{l}{b≥-1}\\{a+b≤1}\\{a-b≥-1}\end{array}\right.$
作出可行域如图,
联立$\left\{\begin{array}{l}{b=-1}\\{a+b=1}\end{array}\right.$,解得:B(2,-1),
联立$\left\{\begin{array}{l}{b=-1}\\{a-b=-1}\end{array}\right.$,解得A(-2,-1),
∴${S}_{△ABC}=\frac{1}{2}×4×2=4$.
故答案为:4.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查数学转化思想方法,是中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p1,p3 | B. | p1,p4 | C. | p2,p3 | D. | p2,p4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com