分析 (1)由$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{1-{a}_{n}}$,化为:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=2,利用等差数列的通项公式即可得出.
(2)a3•a6=$\frac{1}{5}×\frac{1}{11}$=$\frac{1}{55}$=$\frac{1}{2×28-1}$,即可判断出结论.
(3)cn=an•an+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”即可得出.
解答 解:(1)∵$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{1-{a}_{n}}$,化为:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=2,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为1,公差为2,
∴$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,
∴${a}_{n}=\frac{1}{2n-1}$.
(2)a3•a6=$\frac{1}{5}×\frac{1}{11}$=$\frac{1}{55}$=$\frac{1}{2×28-1}$=a28,
∴a3•a6为数列{an}中的第28项.
(3)cn=an•an+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴{cn}的前n项之和为Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=2$(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
点评 本题考查了递推关系、等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题. | |
| B. | 命题p:$?{x_0}∈R,x_0^2-2{x_0}+4<0$,则$?p:?x∈R,x_{\;}^2-2{x_{\;}}+4≥0$ | |
| C. | 命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题 | |
| D. | “$φ=\frac{π}{2}$”是“y=cos(2x+φ)为奇函数”的充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必有一边等于4 | B. | 必有一边等于5 | ||
| C. | AC边上的高是一个定值 | D. | 不可能是钝角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com