精英家教网 > 高中数学 > 题目详情
2.已知等差数列{an}的前n项和为Sn,a2<0,且1,a2,81成等比数列,a3+a7=-6.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{$\frac{{S}_{n}}{n}$}的前n项和Tn取得最小值时n的值.

分析 (I)由a3+a7=-6=2a5,解得a5.由1,a2,81成等比数列,${a}_{2}^{2}$=1×81,a2<0,解得a2.可得等差数列{an}的公差d=$\frac{{a}_{5}-{a}_{2}}{5-2}$.可得an
(II)Sn=n2-12n.$\frac{{S}_{n}}{n}$=n-12.由n-12≤0,解得n即可得出.

解答 解:(I)∵a3+a7=-6=2a5,解得a5=-3.
∵1,a2,81成等比数列,${a}_{2}^{2}$=1×81,a2<0,∴a2=-9.
∴等差数列{an}的公差d=$\frac{{a}_{5}-{a}_{2}}{5-2}$=$\frac{-3-(-9)}{5-2}$=2.
∴an=a2+(n-2)×2=2n-13.
(II)Sn=$\frac{n(-11+2n-13)}{2}$=n2-12n.
$\frac{{S}_{n}}{n}$=n-12.
由n-12≤0,解得n≤12,
∴当n=11,12时,{$\frac{{S}_{n}}{n}$}的前n项和Tn取得最小值.

点评 本题考查了不等式的性质、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,若复数z满足z=$\frac{{i}^{3}}{1+i}$,则z的共轭复数$\overline{z}$为(  )
A.$\frac{1+i}{2}$B.$\frac{1-i}{2}$C.$\frac{-1+i}{2}$D.$\frac{-1-i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=x3B.y=e-xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于下列四个命题
${p_1}:?{x_0}∈(0,+∞),{(\frac{1}{2})^{x_0}}<{(\frac{1}{3})^{x_0}}$;
${p_2}:?{x_0}∈(0,1),{log_{\frac{1}{2}}}{x_0}>{log_{\frac{1}{3}}}{x_0}$;
${p_3}:?x∈(0,+∞),{(\frac{1}{2})^x}<{log_{\frac{1}{2}}}x$;
${p_4}:?x∈(0,\frac{1}{3}),{(\frac{1}{2})^x}<{log_{\frac{1}{3}}}x$.
其中的真命题是(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于数列{an}与{bn},若对数列{cn}的每一项cn,均有ck=ak或ck=bk,则称数列{cn}是{an}与{bn}的一个“并数列”.
(1)设数列{an}与{bn}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,若{cn}是{an}与{bn}一个“并数列”求所有可能的有序数组(c1,c2,c3);
(2)已知数列{an},{cn}均为等差数列,{an}的公差为1,首项为正整数t;{cn}的前10项和为-30,前20项的和为-260,若存在唯一的数列{bn},使得{cn}是{an}与{bn}的一个“并数列”,求t的值所构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正数数列{an}满足:a1=1,n∈N*时,有$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{1-{a}_{n}}$.
(1)求{an}的通项公式;
(2)试问a3•a6是否为数列{an}中的项,若是,是第几项,若不是,说明理由;
(3)设cn=an•an+1(n∈N*),若{cn}的前n项之和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设α和β为不重合的两个平面,给出下列命题:
①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;
②若α外的一条直线I与α内的一条直线平行,则I∥α
③设α∩β=I,若α内有一条直线垂直于I,则α⊥β
④直线I⊥α的充要条件是I与α内的两条直线垂直.
其中所有的真命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设i为虚数单位,则复数$\frac{i-2}{i}$的共轭复数是1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,Sn=2n+1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{4}{3}$-$\frac{1}{{2}^{n-1}}$.

查看答案和解析>>

同步练习册答案