分析 (1)推导出AE⊥EC,AE⊥EB,AE⊥BC,从而BC⊥AB,再上BC⊥面ABE,知BC⊥BE,从而得到四面体EABC是鳖臑.
(2)AE是三棱锥A-BCE的高,求出正方形ABCD的边长,由此能求出四面体EABC的体积.
解答 解:(1)∵AE⊥底面BCFE,EC,EB,BC都在底面BCFE上,
∴AE⊥EC,AE⊥EB,AE⊥BC,![]()
∵四边形ABCD是正方形有,∴BC⊥AB,
∴BC⊥面ABE,又BE?面ABE,∴BC⊥BE,
∴四面体EABC是鳖臑.
(2)由(1)得AE是三棱锥A-BCE的高,
设正方形ABCD的边长为x,则AB=BC=x,BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=$\sqrt{{x}^{2}-1}$,EC=$\sqrt{7}$,
在Rt△BEC中,EC2=BE2+BC2,
即($\sqrt{7}$)2=x2+x2-1,解得x=2,
∴${S}_{△BCE}=\frac{1}{2}×2×\sqrt{3}=\sqrt{3}$,
∴四面体EABC的体积${V}_{A-BCE}=\frac{1}{3}•AE•{S}_{△BCE}$=$\frac{1}{3}×\sqrt{3}=\frac{\sqrt{3}}{3}$.
点评 本题考查四面体是否为鳖臑的判断,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 1+2i | B. | 1-2i | C. | 1+i | D. | -1+i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com