精英家教网 > 高中数学 > 题目详情
5.i为虚数单位,已知复数z满足$\frac{2}{1+i}=\overline z+i$,则z=(  )
A.1+2iB.1-2iC.1+iD.-1+i

分析 利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.

解答 解:由$\frac{2}{1+i}=\overline z+i$,得$\overline{z}=\frac{2}{1+i}-i=\frac{2(1-i)}{(1+i)(1-i)}-i=1-2i$,
∴z=1+2i.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图所示,已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({1,\frac{3}{2}})$,直线l:y=kx+1(k≠0)与椭圆E交于A,B两点,当k=1时,椭圆E的右焦点到直线l的距离为$\sqrt{2}$.
(1)求椭圆E的方程;
(2)设点A关于y轴的对称点为A',试问:直线A'B是否恒过y轴上的一个定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=4x的交点为A,B,且直线AB过双曲线与抛物线的公共焦点F,则双曲线的实轴长为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$C.$\sqrt{2}$-1D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{3}{2}cos\frac{π}{2}(1-x),0≤x≤1\\{(\frac{1}{2})^x}+1,x>1\end{array}\right.$,若函数g(x)=5[f(x)]2-(5a+6)f(x)+6a(a∈R)有且仅有6个不同的零点,则实数a的取值范围(  )
A.$(0,1]∪\left\{{\frac{3}{2}}\right\}$B.$(0,\frac{3}{2}]$C.$(0,1)∪\left\{{\frac{3}{2}}\right\}$D.$(0,\frac{3}{2})∪\left\{0\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=Asin(wx+φ)+B(A>0,w>0,|φ|<\frac{π}{2})$的 部分图象如图所示:
(1)求f(x)的解析式;
(2)求f(x)的单调区间和对称中心坐标;
(3)将f(x)的图象向左平移$\frac{π}{6}$个单位,在将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在$x∈[0,\frac{7π}{6}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入a0=0,a1=1,a2=2,a3=3,a4=4,a5=5,x0=-1,则输出v的值为(  )
A.15B.3C.-3D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2},-1<x≤1}\\{f({x-2}),1<x<3}\end{array}}\right.$,函数f(x)在x=x0处的切线为l,若$\frac{1}{6}<{x_0}<\frac{1}{5}$,则l与f(x)的图象的公共点个数为2或3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的图象与函数y=x3-3x2+2的图象关于点($\frac{1}{2}$,0)对称,过点(1,t)仅能作曲线y=f(x)的一条切线,则实数t的取值范围是(  )
A.(-3,-2)B.[-3,-2]C.(-∞,-3)∪(-2,+∞)D.(-∞,-3)∪[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=$\sqrt{7}$,四边形ABCD是正方形.
(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由.
(2)求四面体EABC的体积.

查看答案和解析>>

同步练习册答案