精英家教网 > 高中数学 > 题目详情
5.函数f(x)=lnx+x2-bx+a(b>0,a∈R)的图象在点(b,f(b))处的切线斜率的最小值是(  )
A.2$\sqrt{2}$B.$\sqrt{3}$C.1D.2

分析 求出原函数的导函数,得到函数在x=b时的导数值,利用基本不等式求最值得答案.

解答 解:由f(x)=lnx+x2-bx+a,得f′(x)=$\frac{1}{x}$+2x-b(x>0),
∴f′(b)=$\frac{1}{b}$+b(b>0)
∴f′(b)=$\frac{1}{b}$+b≥2,
当且仅当b=$\frac{1}{b}$,即b=1时上式取“=”,切线斜率的最小值是2.
故选:D.

点评 本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用基本不等式求最值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=$\sqrt{7}$,四边形ABCD是正方形.
(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由.
(2)求四面体EABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,点P在椭圆C上,满足$\overrightarrow{P{F_1}}•\overrightarrow{{F_1}{F_2}}=0,|{\overrightarrow{P{F_1}}}|=\frac{{\sqrt{5}}}{5},|{\overrightarrow{P{F_2}}}|=\frac{{9\sqrt{5}}}{5}$.
(1)求椭圆C的方程.
(2)设O为坐标原点,过椭圆C的左焦点F1的动直线l与椭圆C相交于M,N两点,是否存在常数t,使得$\overrightarrow{OM}•\overrightarrow{ON}+t\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}$为定值,若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足${a_1}=\frac{3}{2}$,an+1=3an-1(n∈N+).
(1)若数列{bn}满足${b_n}={a_n}-\frac{1}{2}$,求证:{bn}是等比数列;
(2)若数列{cn}满足cn=log3an,Tn=c1+c2+…+cn,求证:${T_n}>\frac{n(n-1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是长方形,侧棱PD⊥底面ABCD,且PD=AD=1,DC=2,过D作DF⊥PB于F,过F作FE⊥PB交PC于E.
(Ⅰ)证明:DE⊥平面PBC;
(Ⅱ)求平面DEF与平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a3=5,a2+a6=14,且2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an-(-1)nn,数列{bn}的前n项和为Tn,求T21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对?x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈Z|-1≤x≤2},B={x|log3x<1},则A∩B=(  )
A.{-1,0,1,2}B.{0,1,2}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论中正确的是(  )
A.∵a∥α,b∥α,∴a∥bB.∵a∥α,b?α,∴a∥bC.∵α∥β,a∥β,∴a∥αD.∵α∥β,a?β,∴a∥α

查看答案和解析>>

同步练习册答案