精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对?x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为(-∞,-1).

分析 求出g(x)的图象关于点(-1,5)对称,令h(x)=g(x)-x2-4,根据函数的单调性求出不等式的解集即可.

解答 解:因为函数f(x)是定义在R上的奇函数,
所以函数f(x)关于原点对称,
又g(x)=f(x+1)+5,
故g(x)的图象关于点(-1,5)对称,
令h(x)=g(x)-x2-4,
∴h′(x)=g′(x)-2x,
∵对?x∈R,g′(x)>2x,
∴h(x)在R上是增函数,
又h(-1)=g(-1)-(-1)2-4=0,
∴g(x)<x2+4的解集是(-∞,-1),
故答案为:(-∞,-1).

点评 本题考查了解不等式问题,考查函数的单调性以及导数的应用,考查对称性,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某次运动会的游泳比赛中,已知5名游泳运动员中有1名运动员服用过兴奋剂,需要通过检验尿液来确定因服用过兴奋剂而违规的运动员,尿液检验结果呈阳性的即为服用过兴奋剂的运动员,呈阴性则没有服用过兴奋剂,组委会提供两种检验方法:
方案A:逐个检验,直到能确定服用过兴奋剂的运动员为止.
方案B:先任选3名运动员,将他们的尿液混在一起检验,若结果呈阳性则表明违规的运动员是这3名运动员中的1名,然后再逐个检验,直到能确定为止;若结果呈阴性则在另外2名运动员中任选1名检验.
(Ⅰ)求依方案A所需检验次数不少于依方案B所需检验次数的概率;
(Ⅱ)ξ表示依方案B所需检验次数,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求实数a的取值范围;
(2)若a=0,求f(x)在区间[t,t+2](t>0)上的最小值;
(3)若函数g(x)=f(x)-x有两个极值点x1,x2,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=lnx+x2-bx+a(b>0,a∈R)的图象在点(b,f(b))处的切线斜率的最小值是(  )
A.2$\sqrt{2}$B.$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|,x∈R.
(Ⅰ)解不等式f(x)<|x|+1;
(Ⅱ)若对于x,y∈R,有|x-y-1|≤$\frac{1}{3}$,|2y+1|≤$\frac{1}{6}$,求证:f(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图长方体ABCD-A1B1C1D1的底面边长为1,侧棱长为2,E、F、G分别为CB1、CD1、AB的中点.
(Ⅰ)求证:FG∥面ADD1A1
(Ⅱ)求二面角B-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足:$\frac{{z(1+i){i^3}}}{2-i}=1-i$则复数$\overline z$的虚部为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$,函数f(x)=logc(x+2)-1(c>0,c≠1)的图象恒过定点A(a,b),则$z=\frac{y-b}{x-a}$的取值范围是(  )
A.$[\frac{1}{3},2]$B.$[\frac{2}{5},1]$C.$[\frac{1}{2},\frac{3}{2}]$D.$[\frac{3}{2},\frac{5}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,平面SAB为圆锥的轴截面,O为底面圆的圆心,M为母线SB的中点,N为底面圆周上的一点,AB=4,SO=6.
(1)求该圆锥的侧面积;
(2)若直线SO与MN所成的角为30°,求MN的长.

查看答案和解析>>

同步练习册答案