精英家教网 > 高中数学 > 题目详情
已知函数,不等式恒成立,求实数a的取值范围.
:因为
,不等式恒成立
恒成立
恒成立
(1)当时,不符合题意,∴
(2)当时,
 得
综上:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数.
(1)若,试判断函数零点个数;
(2)若对,试证明,使成立。
(3)是否存在,使同时满足以下条件①对,且;②对,都有。若存在,求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)判断函数的奇偶性;
(2)判断函数在定义域内是增函数还是减函数?请说明理由;
(3)已知,解关于不等式: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)某生产旅游纪念品的工厂,拟在2010年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x万件与年促销费用t万元之间满足3-xt+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2010年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)(1)求出xt所满足的关系式;(2)请把该工厂2010年的年利润y万元表示成促销费t万元的函数;(3)试问:当2010年的促销费投入多少万元时,该工厂的年利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题





(1)求的解析式;
(2) 当时,不等式:恒成立,求实数的范围.
(3)设,求的最大值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某飞机制造公司最多可产某种型号飞机100架/年,又制造X架该种飞机的产值函

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

我国是水资源比较贫乏的国家之一,各地采用价格调控等手段来达到节约用水的目的. 某市用水收费的方法是:水费=基本费+超额费+损耗费. 若每月用水量不超过最低限量时,只付基本费8元和每户的定额损耗费c元;若用水量超过时,除了付同上的基本费和损耗费外,超过部分每1m3b元的超额费. 已知每户每月的定额损耗费c不超过5元. 该市某家庭今年一月份、二月份和三月份的用水量和支付的费用如下表所示:
根据表格中的数据,求abc.
月  份
用水量
水 费
一月份
9
9元
二月份
15
19元
三月份
22
33元

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,当时,有最小值
(1)求的值;                  (2)求满足的集合;

查看答案和解析>>

同步练习册答案