精英家教网 > 高中数学 > 题目详情
某学校为响应省政府号召,每学期派老师到各个民工子弟学校支教,以下是该学校50名老师上学期在某一个民工子弟学校支教的次数统计结果:
支教次数0123
人数5102015
根据上表信息解答以下问题:
(1)从该学校任选两名老师,用η表示这两人支教次数之和,记“函数f(x)=x2-ηx-1在区间(4,5)上有且只有一个零点”为事件A,求事件A发生的概率P1
(2)从该学校任选两名老师,用ξ表示这两人支教次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
考点:离散型随机变量的期望与方差,等可能事件的概率
专题:概率与统计
分析:(1)由已知条件得
f(4)<0
f(5)>0
,解得η=4,由此能求出事件A发生的概率P1
(2)从该学校任选两名老师,用ξ表示这两人支教次数之差的绝对值,ξ的可能取值分别是0,1,2,3,分别求出相应的概率,由此能求出随机变量ξ的分布列及数学期望Eξ.
解答: 解:(1)函数f(x)=x2-ηx-1过(0,-1)点,在区间(4,5)上有且只有一个零点,
则必有
f(4)<0
f(5)>0
,即:
16-4η-1<0
25-5η-1>0
,解得:
15
4
<η<
24
5

∵∈N*,∴η=4.(3分)
当η=4时,P1=
C
2
20
+C
1
10
C
1
15
C
2
50
=
68
245
.(6分)
(2)从该学校任选两名老师,用ξ表示这两人支教次数之差的绝对值,
则ξ的可能取值分别是0,1,2,3,(7分)
P(ξ=0)=
C
2
5
+
C
2
10
+
C
2
20
+
C
2
15
C
2
50
=
2
7

P(ξ=1)=
C
1
5
C
1
10
+C
1
10
C
1
20
+C
1
15
C
1
20
C
2
50
=
22
49

P(ξ=2)=
C
1
5
C
1
20
+
C
1
10
C
1
15
C
2
50
=
10
49

P(ξ=3)=
C
1
5
C
1
15
C
2
50
=
3
49
,(10分)
从而ξ的分布列:
ξ0123
P
2
7
22
49
10
49
3
49
ξ的数学期望:Eξ=
2
7
+1×
22
49
+2×
10
49
+3×
3
49
=
51
49
. …(12分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某班的数学研究性学习小组有9名成员,在暑假中各自都进行了小课题研究活动,其中参加活动一次的为2人,参加活动两次的为3人,参加活动三次的为4人.
(1)从中人选3人,求这3人参加活动次数各不相同的概率;
(2)从中任选2人,求这2人参加活动次数之和的随机变量ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

五个人站成一排,求在下列条件下的不同排法种数:(用数字作答)
(1)甲、乙两人相邻;   
(2)甲、乙两人不相邻;
(3)甲不在排头,并且乙不在排尾;
(4)甲在乙前,并且乙在丙前.

查看答案和解析>>

科目:高中数学 来源: 题型:

10名学生分成3组,其中一组4人,另两组3人但正副班长不能分在同一组,有多少种不同的分组方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥面ACD,DE⊥面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点,
(1)求证:AF∥面BCE;
(2)求二面角A-CE-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C的对边分别是a、b、c,已知c2=bccosA+cacosB+abcosC.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若
AB
BC
=-3,
AB
AC
=9,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班数学老师对班上50名同学一次考试的数学成绩进行统计,得到如下统计表:
分数段[30,50)[50,70)[70,90)[90,110)[110,130)[130,150]
人数2a121610c
频率0.040.160.240.32bd
(1)求表中a,b,c的值,并估计该班的平均分x;
(2)若该老师想在低于70分的所有同学中随机挑选3位同学了解学习情况,记X为所选3人中分数在[30,50)的同学的人数,求X的概率分布列和均值EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和是Sn,Sn=2an-1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=2n•an,求数列{bn}的前n项和Tn
(3)若数列{cn}满足cn=3n+2(-1)n-1λan(λ为非零常数),确定λ的取值范围,使n∈N*时,都有cn+1>cn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*
(1)求数列{an}的通项公式;
(2)令bn=
2n-1
(an-1)(2an-1)
,记数列{bn}的前n项和为Sn,其中n∈N*,求证:
1
3
≤Sn
1
2

查看答案和解析>>

同步练习册答案