精英家教网 > 高中数学 > 题目详情
4.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,0),(1,1,1),则该四面体的外接球的体积为$\frac{\sqrt{3}}{2}π$.

分析 由题意,四面体的外接球就是棱长为1的正方体的外接球,其直径为正方体的对角线$\sqrt{3}$,求出半径,即可求出四面体的外接球的体积.

解答 解:由题意,四面体的外接球就是棱长为1的正方体的外接球,其直径为正方体的对角线$\sqrt{3}$,
半径为$\frac{\sqrt{3}}{2}$,∴四面体的外接球的体积为$\frac{4}{3}π•(\frac{\sqrt{3}}{2})^{3}$=$\frac{\sqrt{3}}{2}π$.
故答案为:$\frac{\sqrt{3}}{2}π$.

点评 本题考查四面体的外接球的体积,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图所示,椭圆C:x2+$\frac{{y}^{2}}{m}$=1(0<m<1)的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.
(Ⅰ)若点P的坐标为($\frac{7}{5}$,$\frac{4\sqrt{3}}{5}$),求m的值;
(Ⅱ)若椭圆C上存在点M,使得OP⊥OM,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.存在对称中心的曲线叫做有心曲线.显然圆、椭圆和双曲线都是有心曲线.若有心曲线上两点的连线段过中心,则该线段叫做有心曲线的直径.
(1)已知点$P({1,\frac{1}{2}})$,求使△PAB面积为$\frac{{\sqrt{7}}}{2}$时,椭圆$\frac{x^2}{3}+{y^2}$=1的直径AB所在的直线方程;
(2)若过椭圆$\frac{x^2}{3}+{y^2}$=1的中心作斜率为k的直线交椭圆于M,N两点,且椭圆的左、右焦点分别为F1,F2,若以M为圆心,|MF2|长度为半径作⊙M,问是否存在定圆⊙R,使得⊙M恒与⊙R相切?若存在,求出⊙R的方程.若不存在,请说明理由.
(3)定理:若过圆x2+y2=1的一条直径的两个端点与圆上任意一点(不同于直径两端点)的连线所在直线的斜率均存在,那么此两斜率之积为定值-1.请对上述定理进行推广.说明:第(3)题将根据结论的一般性程度给与不同的评分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|=|2$\overrightarrow{a}$+$\overrightarrow{b}$|=1,则|$\overrightarrow{b}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,AB=4,BC=2$\sqrt{2}$,且DE为折痕,将Rt△ADE折起到图2的位置,使平面PDE⊥平面DBCE,连接PC,PB,设G是线段BC的中点,F为线段PC上的动点,满足$\overrightarrow{CF}=λ\overrightarrow{CP}$
(1)当λ为何值时,平面EFG∥平面PDB,试说明理由;
(2)当λ=$\frac{1}{3}$时,求多面体PDBGFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,∠B=30°,∠A=90°,M是边BC的中点,现将△ABM沿AM旋转,当△ABM转到与△ACM所在面垂直时,CB与平面AMC所成的角的正弦值为$\frac{\sqrt{30}}{10}$;异面直线CB与AM所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.正四面体A-BCD,M是棱AB的中点,则CM与面BCD所成的角的正弦值是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上部同于A、B的一点,且AB=2,PA=BC=1
(1)求证:平面PAC⊥平面PBC;
(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-1(x>0),设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*
(1)用xn表示xn+1
(2)求证:xn+1≤xn对一切正整数n都成立的充要条件为x1≥1.
(3)x1=2,求证:$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$+…$\frac{1}{{x}_{n}+1}$≤$\frac{{2}^{n}-1}{3}$.

查看答案和解析>>

同步练习册答案