精英家教网 > 高中数学 > 题目详情
14.已知定义在(0,+∞)上的函数f(x)满足f(x)=x•[f′(x)+1],且f(1)=1,则f(x)的最大值为1.

分析 利用已知条件求出f′(x)=-lnx,可得f(x)=x(1-lnx),然后利用导数求出f(x)的最大值.

解答 解:∵f(x)=x[f′(x)+1],且f(1)=1,
∴f′(1)=0,①
又f′(x)=x[f″(x)]+f′(x)+1,
∴f″(x)=$-\frac{1}{x}$,∴f′(x)=-lnx+c,②
联立①②可求得c=0,
∴f′(x)=-lnx,则f(x)=x(1-lnx),
f′(x)=-lnx(x>0),令f′(x)=0,得x=1.
∵当x∈(0,1)时,f′(x)>0;当x∈(1,+∞) 时,f′(x)<0,
∴当x=1时,f(x)max=1,
故答案为:1.

点评 本题考查了函数的导数运算、导数在最大值、最小值问题中的应用,解答关键是由已知求出f′(x),属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ln(1+x)-ln(1-x)
(1)求函数f(x)的定义域
(2)证明函数f(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l与直线3x+4y-7=0平行,和两坐标轴的正半轴相交,且在第一象限内所成的三角形的面积为18,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{4x-y-4≤0}\\{x≥a}\end{array}\right.$,点(x,y)对应的区域的面积为$\frac{25}{24}$,则x2+y2的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{9}{4}$]B.[$\frac{1}{4}$,$\frac{9}{4}$]C.[$\frac{1}{4}$,$\frac{32}{9}$]D.[$\frac{1}{4}$,$\frac{17}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足(1+i)•z=2-i(i为虚数单位),则复数z为(  )
A.$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{1}{2}$-$\frac{3}{2}$iC.1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知n≥2且n∈N*,对n2进行“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么289的“分拆”所得的中位数是(  )
A.29B.21C.19D.17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2$\sqrt{3}$sinxcosx+2sin2x-1.
(1)求函数f(x)的对称中心和单调递减区间;
(2)若将函数f(x)图象上每一点的横坐标都缩短到原来的$\frac{1}{2}$(纵坐标不变),然后把所得图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)=$\left\{\begin{array}{l}{1-\sqrt{x},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,则f(f(4))=(  )
A.-1B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(1+x)n,请利用这个函数,证明如下结论:
(1)Cn0+Cn1+Cn2+…+Cnn=2n
(2)Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1

查看答案和解析>>

同步练习册答案