精英家教网 > 高中数学 > 题目详情
(本题满分14分)已知函数.
(1)若函数依次在处取到极值.
①求的取值范围;
②若,求的值.
(2)若存在实数,使对任意的,不等式 恒成立.求正整数 的最大值
(1)①     ②
(2)的最大值为5
(1)①由题意可知方程有三个不同的实数根.
然后再构造函数,利用导数研究g(x)的图像特征,根据其极值和g(x)有三个零点建立关于t的不等式,求出t的取值范围.
,

然后根据对应系数相等建立关于a,b,c,t的方程,求出a,b,c,t的值.
(1)   解决本小题的关键是做好几个转化:不等式 ,即
.转化为存在实数,使对任意的,不等式恒成立.即不等式上恒成立.
即不等式上恒成立.然后构造,利用导数研究其最小值即可.
解:(1)①


…………5分


,……10分
(2)不等式 ,即,即.
转化为存在实数,使对任意的,不等式恒成立.
即不等式上恒成立.
即不等式上恒成立.
,则.
,则,因为,有.
在区间上是减函数.又
故存在,使得.
时,有,当时,有.
从而在区间上递增,在区间上递减.


所以当时,恒有;当时,恒有
故使命题成立的正整数的最大值为5.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)已知函数,其中a为实数。
(1)求函数的单调区间;
(2)若函数对定义域内的任意x恒成立,求实数a的取值范围。
(3)证明,对于任意的正整数mn,不等式恒成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(x2­­+bx+c)ex,其中b,cR为常数. 
(Ⅰ)若b2>4(c-1),讨论函数f(x)的单调性;
(Ⅱ)若b2≤4(c-1),且=4,试证:-6≤b≤2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(常数a,b满足0<a<1,bR)
(1)求函数f(x)的单调区间和极值;
(2)若对任意的,不等式|a恒成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的极小值点在(0,1)内,则实数的取值范围是(    )
A.(-1,0)B.(1,2)C.(-1,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.函数f(x)=x3+ax+1在(-,-1)上为增函数,在(-1,1)上为减函数,则f(1)为(   )
A.B.1C.D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点且与曲线相切,求直线的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)讨论在其定义域上的单调性;
(II)当时,若关于x的方程恰有两个不等实根,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数上单调递增,则实数a的取值范围是       .

查看答案和解析>>

同步练习册答案