精英家教网 > 高中数学 > 题目详情
如果说某物体作直线运动的时间与距离满足s(t)=2(1-t)2,则其在t=1.2时的瞬时速度为(  )
A、4B、-4C、4.8D、0.8
考点:导数的运算
专题:导数的概念及应用
分析:根据导数的物理意义,求函数的导数即可得到结论.
解答: 解:∵s(t)=2(1-t)2
∴s′(t)=-4(1-t),
则s′(1.2)=-4(1-1.2)=-4×(-0.2)=0.8,
故选:D
点评:本题主要考查导数的计算,根据导数的物理意义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

比较大小:sin
32π
5
 
sin
27π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-1,1),则函数g(x)=f(
x
2
)+f(x-1)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x=t与函数f(x)=
1
4
x2+2,g(x)=ln(x+1)的图象分别交于A,B两点,则|AB|的最小值为(  )
A、
9
4
-ln2
B、
9
2
-2ln2
C、
9
2
-ln2
D、
9
4
-2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论,其中判断正确的是(  )
A、数列{an}前n项和Sn=n2-2n+1,则{an}是等差数列
B、数列{an}前n项和Sn,则an=1
C、数列{an}前n项和Sn=2n-1,则{an}不是等比数列
D、数列{an}前n项和Sn=7n2-8n,则a100=1385

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg|x|的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知λ∈R,函数f(x)=
|x+1|,x<0
lgx,x>0
,g(x)=x2-4x+1+2λ,若关于x的方程f(g(x))=λ有6个解,则λ的取值范围为(  )
A、(0,
1
2
]
B、(0,
2
3
C、(
1
2
,1)
D、(
1
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+
1
x
的值域是(  )
A、(1,+∞)
B、(-∞,2)
C、(-∞,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在[0,+∞)上为单调递减,则满足不等式f(2x-1)>f(3)的x的取值范围是(  )
A、[-1,2]
B、[-1,+∞)
C、(1,2)
D、(-1,2)

查看答案和解析>>

同步练习册答案