精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,四边形为正方形,四边形为等腰梯形,.

(1)求证:平面
(2)求四面体的体积;
(3)线段上是否存在点,使平面?请证明你的结论.
(1)详见解析;(2);(3)详见解析.

试题分析:(1)利用勾股定理得到,再结合并利用直线与平面垂直的判定定理证明平面;(2)先证明平面,从而得到为三棱锥的高,并计算的面积作为三棱锥的底面积。最后利用锥体的体积公式计算四面体的体积;(3)连接于点,根据平行四边形的性质得到的中点,然后取的中点,构造底边的中位线,得到,结合直线与平面平行的判定定理得到平面.
试题解析:(1)在中,因为

又因为,且平面平面平面
(2)因为平面,且平面
,且平面平面
平面,即为三棱锥的高,
在等腰梯形中可得,所以
的面积为
所以四面体的体积为
(3)线段上存在点,且的中点时,有平面

证明如下:连接交于点,连接
四边形为正方形,所以的中点,
的中点,
平面平面平面
因此线段上存在点,使得平面成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
 
(1)证明:BC1//平面A1CD;
(2)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,平面平面是边长为2的正三角形,
,且.

(1)求证:
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角PACB的大小为60°.过P作PH⊥EF于H.

(1)求证:PH⊥平面ABC;
(2)若a+b=2,求四面体PABC体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,是边长为4的正三角形,平面平面的中点.

(1)证明:
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥DABC的体积为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一个圆锥的侧面展开图是面积为2的半圆面,则该圆锥的体积为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将边长为的正方形沿对角线折起,使,则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案