【题目】如图,已知圆E:
经过椭圆C:
(
)的左右焦点
,
,与椭圆C在第一象限的交点为A,且
,E,A三点共线.
![]()
(1)求椭圆C的方程;
(2)是否存在与直线
(O为原点)平行的直线l交椭圆C于M,N两点.使
,若存在,求直线l的方程,不存在说明理由.
科目:高中数学 来源: 题型:
【题目】已知圆C的方程为:(x-3)2+(y-2)2=r2(r>0),若直线3x+y=3上存在一点P,在圆C上总存在不同的两点M,N,使得点M是线段PN的中点,则圆C的半径r的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心为坐标原点,焦点在
轴上,离心率
,以椭圆
的长轴和短轴为对角线的四边形的周长为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若经过点
的直线
交椭圆
于
两点,是否存在直线
,使得
到直线
的距离
满足
恒成立,若存在,请求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三期中考试后,数学教师对本次全部学生的数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:
分数段(分) |
|
|
|
|
| 总计 |
频数 |
| |||||
频率 |
| 0.25 |
![]()
(1)求表中
,
的值及成绩在![]()
范围内的样本数;
(2)从成绩
内的样本中随机抽取4个样本,设其中成绩在
内的样本个数为随机变量
,求
的分布列及数学期望
;
(3)若把样本各分数段的频率看作总体相应各分数段的概率,现从全校高三期中考试数学成绩中随机抽取5个,求其中恰有2个成绩在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂在某年里连续10个月每月产品的总成本
(万元)与该月产量
(万件)之间有如下一组数据:
| 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
| 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合
与
的关系,请用相关系数
加以说明;
(2)①建立月总成本
与月产量
之间的回归方程;②通过建立的
关于
的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)
附注:①参考数据:
,
,
,
,
.
②参考公式:相关系数
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com