精英家教网 > 高中数学 > 题目详情
作出函数图象y=|x-2|的图象,并指出函数的单调区间.
考点:函数的图象
专题:
分析:先做出函数y=x-2的图象,然后根据绝对值得性质求的结果
解答: 解:现根据函数的解析式做出函数y=x-2的图象,然后作出
      y=|x-2|的图象,函数的递增区间为:[2,+∞),函数的递减区间为:(-∞,2]


点评:本题主要考察函数图象的翻折问题,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集为R,A={x|x>-1},B={x|x≤5},求:
(1)A∩B;  (2)A∪B;  (3)CRA、CRB; (4)(CRA)∩(CRB);(5)(CRA)∪(CRB).

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数定义域.
(1)f(x)=2x+1  (2)f(x)=
2
x-1
  (3)f(x)=(x-2)0+1  (4)f(x)=
1
x2-5x+6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点到其右准线的距离为1,到右顶点的距离为
2
-1,圆O:x2+y2=a2,P为圆O上任意一点.
(1)求a,b;
(2)过点P作PH⊥x轴,垂足为H,线段PH与椭圆交点为M,求
MH
PH

(3)过点P作椭圆E的一条切线l,直线m是经过点P且与切线l垂直的直线,试问:直线m是否经过一定点?如果是,请求出此定点坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(bx+c)lnx在x=
1
e
处取得极值,且在x=1处的切线的斜率为1.
(1)求b,c的值及f(x)的单调减区间;
(2)求f(x)在x∈[
e
2
,2e]时的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1中,AC⊥BC,|AA1|=|BC|=1,|AC|=
2
,点M是BB1的中点,Q是AB的中点.
(1)若P是A1C1上的一动点,求证:PQ⊥CM;
(2)求二面角A-A1B-C大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n(a1+an)
2

(1)求证:数列{an}为等差数列;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD为平行四边形,侧面PBC⊥底面ABCD,E,F分别是PB,AD的中点,已知∠ABC=45°,AB=2,BC=2
2
,PA=PB=
3

(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)证明:PA⊥BC:
(Ⅲ)求直线PD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2,
(Ⅰ)求证:AC∥平面BEF;
(Ⅱ)求二面角A-FD-B的正切值;
(Ⅲ)求点D到平面BEF的距离.

查看答案和解析>>

同步练习册答案