精英家教网 > 高中数学 > 题目详情
已知直三棱柱ABC-A1B1C1中,AC⊥BC,|AA1|=|BC|=1,|AC|=
2
,点M是BB1的中点,Q是AB的中点.
(1)若P是A1C1上的一动点,求证:PQ⊥CM;
(2)求二面角A-A1B-C大小的余弦值.
考点:二面角的平面角及求法,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(1)以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能证明PQ⊥CM.
(2)求出平面AA1B的法向量和平A1BC的法向量,利用向量法能示出二面角A-A1B-C的余弦值.
解答: (1)证明:以C为原点,CA为x轴,CB为y轴,CC1为z轴,
建立空间直角坐标系,
由题意知设P(t,0,1),0<t<
2
,A(
2
,0,0),
B(0,1,0),Q(
2
2
1
2
,0),C(0,0,0),M(0,1,
1
2
),A1(
2
,0,1)

PQ
=(
2
2
-t,
1
2
,-1)
CM
=(0,1,
1
2
),
PQ
CM
=0+
1
2
-
1
2
=0,
∴PQ⊥CM.
(2)解:
BA
=(
2
,-1,0
),
BA1
=(
2
,-1,1),
CB
=(0,1,0),
设平面AA1B的法向量
n
=(x,y,z)

n
BA
=
2
x-y=0
n
BA1
=
2
x-y+z=0

取x=
2
,得
n
=(
2
,2,0
),
设平A1BC的法向量
m
=(a,b,c),
m
BA1
=
2
a-b+c=0
m
BC
=b=0

取a=
2
,得m=(
2
,0,-2),
设二面角A-A1B-C大小的平面角为θ,
则cosθ=|cos<
m
n
>|=|
2
6
6
|=
1
3

∴二面角A-A1B-C的余弦值为
1
3
点评:本题考查异面直线垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=
k
2
x2+x+1.
(1)当k=1时,证明:f(x)≥g(x)-
x2
2

(2)若f(x)≥g(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂2012年的生产总值为2000万元,技术改造后预计以后每年的生产总值比上一年增加5%,问:最早在哪一年生产总值超过3000万元?写出一个计算的算法,并画出流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线C:y2=2px(p>0)上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交与A、B两点,如果点M在直线AB的上方,求△MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数图象y=|x-2|的图象,并指出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M有特征值λ1=8及对应特征向量α1=
1
1
,且矩阵M对应的变换将点(1,-1)变换成(4,0),求矩阵M的另一个特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在公务员招聘中,既有文化考试又有面试.我省一单位在2014年公务员考试成绩中随机抽取100名考生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100)得到的频率分布直方图如图所示.

(Ⅰ)求a的值以及这100名考生的平均成绩;
(Ⅱ)若该单位决定在笔试成绩较高的第3、4、5组中用分层抽样抽取6名考生进入第二轮面试.
(i)已知考生甲和考生乙的成绩分别在第三组与第四组,求考生甲和考试乙同时进入第二轮面试的概率;
(ii)单位决定在这6名考生中随机抽取3名学生接受单位领导的面试,设第4组中有ξ名考生接受领导的面试,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5(其中常数a,b∈R),f′(1)=3,x=-2是函数f(x)的一个极值点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-x-3在x=-1时取得极值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在区间[-2,1]上的最大值.

查看答案和解析>>

同步练习册答案