精英家教网 > 高中数学 > 题目详情
在公务员招聘中,既有文化考试又有面试.我省一单位在2014年公务员考试成绩中随机抽取100名考生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100)得到的频率分布直方图如图所示.

(Ⅰ)求a的值以及这100名考生的平均成绩;
(Ⅱ)若该单位决定在笔试成绩较高的第3、4、5组中用分层抽样抽取6名考生进入第二轮面试.
(i)已知考生甲和考生乙的成绩分别在第三组与第四组,求考生甲和考试乙同时进入第二轮面试的概率;
(ii)单位决定在这6名考生中随机抽取3名学生接受单位领导的面试,设第4组中有ξ名考生接受领导的面试,求ξ的分布列及数学期望.
考点:离散型随机变量的期望与方差,频率分布直方图,众数、中位数、平均数
专题:概率与统计
分析:(Ⅰ)由频率分布直方图能求出a的值以及这100名考生的平均成绩.
(Ⅱ)(i)第3、4、5组分别有考生30、20、10人,按分层抽样,各组抽取的人数为:3、2、1,抽取比例为
1
10
,由此能求出考生甲和考试乙同时进入第二轮面试的概率.
(ii)由题意知,ξ=0,1,2,分别求出相应的概率,由此能求出ξ的分布列及数学期望.
解答: (本小题满分12分)
解:(Ⅰ)由(0.01+0.07+a+0.04+0.02)×5=1,得a=0.06.…(3分)
令中位数为x,则0.1×5+0.07×5+(x-85)×0.06=0.5,
∴x=86.67.…(6分)
(Ⅱ)(i)第3、4、5组分别有考生30、20、10人,按分层抽样,各组抽取的
人数为:3、2、1,抽取比例为
1
10

于是第3组的考生甲进入第二轮面试的概率为
1
10

第4组的考生乙进入第二轮面试的概率为
1
10

∴考生甲和考试乙同时进入第二轮面试的概率p=
1
10
×
1
10
=
1
100
.…(8分)
(ii)由题意知,ξ=0,1,2,
P(ξ=0)=
C
3
4
C
3
6
=
1
5

P(ξ=1)=
C
2
4
C
1
2
C
3
6
=
3
5

P(ξ=2)=
C
1
4
C
2
2
C
3
6
=
1
5

∴ξ的分布列为:
 ξ 0 1 2
 P 
1
5
 
3
5
 
1
5
Eξ=
1
5
+1×
3
5
+2×
1
5
=1.…(12分)
点评:本题考查概率的求法,考查离散型随机变量的数学期望和分布列的求法,解题时要认真审题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=xk+b(常数k,b∈R)的图象过点(4,2)、(16,4)两点.
(1)求f(x)的解析式;
(2)问:是否存在边长为4正三角形△PQ1Q2,使点P在函数f(x)图象上,Q1、Q2从左至右是x正半轴上的两点?若存在,求直线PQ2的方程,若不存在,说明理由;
(3)若函数g(x)的图象与函数f(x)的图象关于直线y=x对称,且不等式g(x)+g(x-2)>2ax+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点到其右准线的距离为1,到右顶点的距离为
2
-1,圆O:x2+y2=a2,P为圆O上任意一点.
(1)求a,b;
(2)过点P作PH⊥x轴,垂足为H,线段PH与椭圆交点为M,求
MH
PH

(3)过点P作椭圆E的一条切线l,直线m是经过点P且与切线l垂直的直线,试问:直线m是否经过一定点?如果是,请求出此定点坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1中,AC⊥BC,|AA1|=|BC|=1,|AC|=
2
,点M是BB1的中点,Q是AB的中点.
(1)若P是A1C1上的一动点,求证:PQ⊥CM;
(2)求二面角A-A1B-C大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n(a1+an)
2

(1)求证:数列{an}为等差数列;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)从集合{-1,0,1,2}中随机选取一个数为m,从集合{0,1}中随机选取一个数为n,求m-2n=0的概率;
(Ⅱ)从集合{x|-1≤x≤2}中随机选取一个数为a,从集合{y|0≤y≤1}中随机选取一个数为b,求a-2b>0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD为平行四边形,侧面PBC⊥底面ABCD,E,F分别是PB,AD的中点,已知∠ABC=45°,AB=2,BC=2
2
,PA=PB=
3

(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)证明:PA⊥BC:
(Ⅲ)求直线PD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校高中学生的校本课程选课过程中,规定每位学生必选一个科目,并且只选一个科目.已知某班一组与二组各有6位同学,选课情况如下表:
科目
组别
15
24
总计39
现从一组、二组中各任选2人.
(Ⅰ)求选出的4人均选科目乙的概率;
(Ⅱ)设X为选出的4个人中选科目甲的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=
x+2
的图象.

查看答案和解析>>

同步练习册答案