精英家教网 > 高中数学 > 题目详情
若|
a
+
b
|=|
a
-
b
|=2|
a
|,则向量
a
-
b
b
的夹角为(  )
A、
6
B、
3
C、
π
3
D、
π
6
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由已知条件得
a
b
,且
3
|
a
|=|
b
|,由此能求出向量
a
-
b
b
的夹角.
解答: 解:∵|
a
+
b
|=|
a
-
b
|=2|
a
|,
a
b
,且
3
|
a
|=|
b
|,
∴cos<(
a
-
b
),
b
>=
(
a
-
b
)•
b
|
a
-
b
|•|
b
|
=-
|
b
|2
2|
a
|•|
b
|

=-
|
b
|
2|
a
|
=-
3
2

∴向量
a
-
b
b
的夹角为
6

故选:A.
点评:本题考查向量的夹角的求法,是中档题,解题时要认真审题,注意平面向量数量积的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合M={x|x<-2或x≥3},N={x|x-a≤0},若N∩∁RM≠∅(R为实数集),则a的取值范围是(  )
A、{a|a≤3}
B、{a|a>-2}
C、{a|a≥-2}
D、{a|-2≤a≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥S-ABC中,若侧棱 SA=4
3
,高SO=4,则此正三棱锥S-ABC外接球的表面积是(  )
A、36πB、64π
C、144πD、256π

查看答案和解析>>

科目:高中数学 来源: 题型:

用边长为6分米的正方形铁皮做一个无盖的水箱,先在四角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图).设水箱底面边长为x分米,则(  )
A、水箱容积最大为8立方分米
B、水箱容积最大为64立方分米
C、当x在(0,3)时,水箱容积V(x)随x增大而增大
D、当x在(0,3)时,水箱容积V(x)随x增大而减小

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCDEF是正六边形,且
AB
=
a
AE
=
b
,则
BC
=(  )
A、
1
2
a
-
b
B、
1
2
b
-
a
C、
a
+
1
2
b
D、
1
2
a
+
b

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)若
a
b
c
均为单位向量,
a
b
=-
1
2
c
=x
a
+y
b
a
b
=-
1
2
(x,y∈R),则x+y的最大值是(  )
A、2
B、
3
C、
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为R的球,其内接正方体的表面积为(  )
A、4R2
B、6R2
C、8R2
D、10R2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AC=BC=1,∠ACB=90°,PA⊥平面ABC,CE∥PA,PA=2CE=2.
(Ⅰ)求三棱锥E-PAB的体积;
(Ⅱ)在棱PB上是否存在一点F,使得EF∥平面ABC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列条件分别确定m的值.
①x轴上的截距是-3;
②l的倾斜角为
π
4

(Ⅱ)求经过直线l1:x+y+1=0,l2:5x-y-1=0的交点,并且与直线3x+2y+1=0垂直的直线方程.

查看答案和解析>>

同步练习册答案