精英家教网 > 高中数学 > 题目详情
12.已知常数a>0,函数好h(x)=ln(1+ax),g(x)=$\frac{2x}{x+2}$
(Ⅰ)讨论f(x)=h(x)-g(x)在区间(0,+∞)上的单调性;
(Ⅱ)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.
(Ⅲ)当a=1时,证明:当0<x<2时,h(x)+$\sqrt{x+1}$-1$<\frac{9x}{x+6}$.

分析 (Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;
(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决;
(Ⅲ)由均值不等式,可得$\sqrt{x+1}$<$\frac{x}{2}$+1,构造函数k(x)=ln(x+1)-x,可得ln(x+1)<x,从而当x>0时,f(x)<$\frac{3}{2}$x,记h(x)=(x+6)f(x)-9x,可证h(x)在(0,2)内单调递减,从而h(x)<0,故问题得证.

解答 解:(Ⅰ)∵f(x)=ln(1+ax)-$\frac{2x}{x+2}$.
∴f′(x)=$\frac{a}{1+ax}$-$\frac{4}{{(x+2)}^{2}}$=$\frac{{ax}^{2}-4(1-a)}{(1+ax{)(x+2)}^{2}}$,
∵(1+ax)(x+2)2>0,∴当1-a≤0时,即a≥1时,f′(x)≥0恒成立,则函数f(x)在(0,+∞)单调递增,
当0<a≤1时,由f′(x)=0得x=±$\frac{2\sqrt{a(1-a)}}{a}$,则函数f(x)在(0,$\frac{2\sqrt{a(1-a)}}{a}$)单调递减,在($\frac{2\sqrt{a(1-a)}}{a}$,+∞)单调递增.
(Ⅱ)由(Ⅰ)知,当a≥1时,f′(x)≥0,此时f(x)不存在极值点.
因此要使f(x)存在两个极值点x1,x2,则必有0<a<1,又f(x)的极值点值可能是x1=$\frac{2\sqrt{a(1-a)}}{a}$,x2=-$\frac{2\sqrt{a(1-a)}}{a}$
且由f(x)的定义域可知x>-$\frac{1}{a}$且x≠-2,
∴-$\frac{2\sqrt{a(1-a)}}{a}$>-$\frac{1}{a}$且-$\frac{2\sqrt{a(1-a)}}{a}$≠-2,解得a≠$\frac{1}{2}$,
则x1,x2分别为函数f(x)的极小值点和极大值点,
∴f(x1)+f(x2
=ln[1+ax1]-$\frac{{2x}_{1}}{{x}_{1}+2}$+ln(1+ax2)-$\frac{{2x}_{2}}{{x}_{2}+2}$
=ln[1+a(x1+x2)+a2x1x2]-$\frac{{{4x}_{1}x}_{2}+4{(x}_{1}{+x}_{2})}{{{x}_{1}x}_{2}+2({{x}_{1}+x}_{2})+4}$
=ln(2a-1)2-$\frac{4(a-1)}{2a-1}$=ln(2a-1)2+$\frac{2}{2a-1}$-2.
令2a-1=x,由0<a<1且a≠$\frac{1}{2}$得,
当0<a<$\frac{1}{2}$时,-1<x<0;当$\frac{1}{2}$<a<1时,0<x<1.
令g(x)=lnx2+$\frac{2}{x}$-2.
i)当-1<x<0时,g(x)=2ln(-x)+$\frac{2}{x}$-2,
∴g′(x)=$\frac{2}{x}$-$\frac{2}{{x}^{2}}$=$\frac{2x-2}{{x}^{2}}$<0,
故g(x)在(-1,0)上单调递减,g(x)<g(-1)=-4<0,
∴当0<a<$\frac{1}{2}$时,f(x1)+f(x2)<0;
(ii)当0<x<1.g(x)=2lnx+$\frac{2}{x}$-2,g′(x)=$\frac{2}{x}$-$\frac{2}{{x}^{2}}$=$\frac{2x-2}{{x}^{2}}$<0,
故g(x)在(0,1)上单调递减,g(x)>g(1)=0,
∴当$\frac{1}{2}$<a<1时,f(x1)+f(x2)>0;
综上所述,a的取值范围是($\frac{1}{2}$,1).
(Ⅲ)证明:h(x)+$\sqrt{x+1}$-1=ln(x+1)+$\sqrt{x+1}$-1
由均值不等式,当x>0时,2$\sqrt{(x+1)•1}$<x+1+1=x+2,
∴$\sqrt{x+1}$<$\frac{x}{2}$+1①
令k(x)=ln(x+1)-x,则k(0)=0,k′(x)=$\frac{1}{x+1}$-1=$\frac{-x}{x+1}$<0,∴k(x)<0
∴ln(x+1)<x,②
由①②得,当x>0时,f(x)<$\frac{3}{2}$x
记h(x)=(x+6)f(x)-9x,则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)-9
<$\frac{3}{2}$x+(x+6)($\frac{1}{x+1}$+$\frac{1}{2\sqrt{x+1}}$)-9<$\frac{1}{2(x+1)}$[3x(x+1)+(x+6)(3+$\frac{x}{2}$)-18(x+1)]
=$\frac{x}{4(x+1)}$(7x-18)<0
∴h(x)在(0,2)内单调递减,又h(0)=0,∴h(x)<0
∴当0<x<2时,f(x)<$\frac{9x}{x+6}$.

点评 本题考查导数知识的运用,考查导数的几何意义,考查构造法的运用,考查不等式的证明,正确构造函数是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知P(-1,1),Q(2,4)是曲线y=x2上的两点.
(1)求过点P,Q的曲线y=x2的切线方程;
(2)求与直线PQ平行的曲线y=x2的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{\sqrt{3}}}{2}$,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l过椭圆的左顶点A,且与椭圆相交于另一点B.
(i)若$|AB|=\frac{{4\sqrt{2}}}{5}$,求直线l的倾斜角;
(ii)若点Q(0,y0)在线段AB的垂直平分线上,且$\overrightarrow{QA}•\overrightarrow{QB}=4$,求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率 e=$\frac{4}{5}$,且经过点(0,3),左右焦点分别为F1,F2
(1)求椭圆C的方程;
(2)过F1作直线l与椭圆C交于A、B两点,求△ABF2的面积S的最大值,并求出S取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)右支上一点,以P为圆心能作一圆恰好过双曲线的左顶点A和右焦点F,则该双曲线的离心率e的取值范围为(  )
A.(1,2]B.(1,3]C.[2,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,长方体ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一点,且满足B1D⊥平面ACE.
(Ⅰ)求证:A1D⊥AE;
(Ⅱ)求三棱锥A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知某几何体的三视图如图所示,(图中每一格为1个长度单位)则该几何体的全面积为4+4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥侧面ABB1A1,AC=AA1=$\sqrt{2}$AB,∠AA1C1=60°.AB⊥AA1,H为棱CC1的中点,D为BB1的中点.
(Ⅰ)求证:A1D⊥平面AB1H;
(Ⅱ)AB=$\sqrt{2}$,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知四棱锥P-ABCD中,底面ABCD是正方形,边长为4,PA=PD=$\sqrt{13}$,侧面PAD⊥底面ABCD,在四棱锥内放一个球,要使它的体积最大,则球的半径为(  )
A.3B.2C.1D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案