精英家教网 > 高中数学 > 题目详情

数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+++ +Sn的大小.

.

解析试题分析:由1-a2是a1与1+a3的等比中项以及公比为可以得出首项,从而求得数列{an}的通项公式.通过代特殊值法可以解得可求得,所以 通过裂项相消以及等比数列求和公式,再用放缩法可以得.
试题解析:(Ⅰ)由题意,即
解得,∴                                        2分
,即                             4分
解得 或(舍)∴                            6分
(Ⅱ)由(Ⅰ)知
          ①                           8分

 ②11分
由①②可知                             12分
考点:1.等比数列的性质;2.裂项相消法.3.等比数列的求和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等比数列的前项和,已知成等差数列.
(1)求数列的公比和通项
(2)若是递增数列,令,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均是正数,其前项和为,满足.
(I)求数列的通项公式;
(II)设数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列单调递增,.
(Ⅰ)求
(Ⅱ)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{}的前项和为,已知对任意的,点,均在函数的图像上.
(Ⅰ)求的值;
(Ⅱ)记求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等差数列的前项和,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,
(Ⅰ)记,求证:数列为等比数列;
(Ⅱ)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}为等差数列,Sn为其前n项和,且
(1)求数列{an}的通项公式; 
(2)求证数列是等比数列;
(3)求使得的成立的n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.

查看答案和解析>>

同步练习册答案