精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=$\left\{\begin{array}{l}{(x-\frac{1}{x})^{8},x<0}\\{-\sqrt{x},x≥0}\\{\;}\end{array}\right.$,则当x>0时,f[f(x)]表达式的展开式中常数项为(  )
A.-20B.20C.-70D.70

分析 根据分段函数求出f[f(x)]的解析式,再利用二项式展开式的通项公式即可求出展开式的常数项.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(x-\frac{1}{x})^{8},x<0}\\{-\sqrt{x},x≥0}\\{\;}\end{array}\right.$,
∴当x>0时,f[f(x)]=f(-$\sqrt{x}$)=${(-\sqrt{x}+\frac{1}{\sqrt{x}})}^{8}$=${(\sqrt{x}-\frac{1}{\sqrt{x}})}^{8}$,
其展开式的通项公式为
Tr+1=${C}_{8}^{r}$•${(\sqrt{x})}^{8-r}$•${(-\frac{1}{\sqrt{x}})}^{r}$=(-1)r•${C}_{8}^{r}$•x4-r
令4-r=0,解得r=4;
∴展开式的常数项为:
T5=(-1)4•${C}_{8}^{4}$=70.
故选:D.

点评 本题考查了分段函数与二项式展开式通项公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列几何体是组合体的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.角α的终边上有一点M(-2,4),则tanα=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列数组排成一排:$(\frac{1}{1}),(\frac{2}{1},\frac{1}{2}),(\frac{3}{1},\frac{2}{2},\frac{1}{3}),(\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4}),(\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}),…$如果把上述数组中的括号都去掉会形成一个数列:$\frac{1}{1},\frac{2}{1},\frac{1}{2},\frac{3}{1},\frac{2}{2},\frac{1}{3},\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4},\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}$,…有同学观察得到$\frac{63×64}{2}$=2016,据此,该数列中的第2012项是$\frac{5}{59}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是(  )
A.样本方差反映了所有样本数据与样本平均值的偏离程度
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好
D.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是残差平方和

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=4tan(2x+$\frac{π}{3}$)+1的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.地球赤道的半径为6370km,则赤道上1弧度角所对的圆弧长为6370km.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-bx2+cx+d的图象过点P(0,2),且在点M(1,f(1))处的切线方程为x-y-2=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别为棱AA1,BB1,A1B1的中点,则点G到平面EFD1的距离为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案