| A. | 0 | B. | 1 | C. | -1 | D. | 2 |
分析 法一:由函数f(x)为奇函数,根据奇函数的性质得到f(-x)=-f(x),分别代入列出关于a的方程,即可求出a的值.
法二:由奇函数的性质可知,g(x)=(x+1)(x+a)=x2+(a+1)x+a为偶函数,根据偶函数的性质可知,函数的对称轴x=0可求a
解答 解:由题意可得,x≠0,f(-x)=-f(x),
∴$\frac{(-x+1)(-x+a)}{-x}=-\frac{(x+1)(x+a)}{x}$,
整理可得,2(a+1)x=0对任意x≠0都成立,
∴a+1=0,
∴a=-1,
故答案为:-1.
法二:∵$y=\frac{{({x+1})({x+a})}}{x}$是奇函数,
由奇函数的性质可知,g(x)=(x+1)(x+a)=x2+(a+1)x+a为偶函数,
根据偶函数的性质可知,函数的对称轴x=-(a+1)=0,
∴a=-1,
故选:C.
点评 本题主要考查了函数奇偶性的性质,当函数为偶函数时有f(-x)=f(x);当函数为奇函数时有f(-x)=-f(x),熟练掌握此性质是解本题的关键
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{7}}{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{4\sqrt{7}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x≤0} | B. | {x|-2<x<0} | C. | {x|x≤-2或x≥0} | D. | {x|x<-2或x>0} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com