精英家教网 > 高中数学 > 题目详情
12.若不等式x2-ax+b<0的解集为{x|1<x<2},则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{5}}{3}$.

分析 由题意可得1,2为方程x2-ax+b=0的解,运用韦达定理可得a,b,再由椭圆的基本量的关系可得c,运用离心率公式即可得到所求值.

解答 解:不等式x2-ax+b<0的解集为{x|1<x<2},
可得1,2为方程x2-ax+b=0的解,
即有1+2=a,1×2=b,
即a=3,b=2,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{5}$,
则离心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$.
故答案为:$\frac{\sqrt{5}}{3}$.

点评 本题考查椭圆的离心率的求法,同时考查二次不等式的解法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1与双曲线$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{5}$=1有共同的焦点F1,F2,两曲线的一个交点为P,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的值为(  )
A.3B.7C.11D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将${({1-\frac{1}{x^2}})^n}(n∈{N_+})$的展开式中x-4的系数记为an,则$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$等于(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2016}$的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是(  )
A.i>1008,n=n+2B.i≤1008,n=n+2C.i>2016,n=n+1D.i>2016,n=n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn=1×2+2×3+3×4+…+n(n+1),计算S1,S2,S3,并归纳前n项和Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=1,公差d>0,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项
(Ⅰ)求数列{an},{bn}的通项公式
(Ⅱ)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数Z满足Z•(1+i)=2i,则Z是(  )
A.1+iB.1-iC.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线x2=4y的焦点F的坐标为(0,1),若M是抛物线上一点,|MF|=4,O为坐标原点,则∠MFO=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y=-2x2的焦点坐标为(  )
A.(-$\frac{1}{8}$,0)B.($\frac{1}{4}$,0)C.(0,-$\frac{1}{8}$)D.(0,-$\frac{1}{4}$)

查看答案和解析>>

同步练习册答案