精英家教网 > 高中数学 > 题目详情
3.将${({1-\frac{1}{x^2}})^n}(n∈{N_+})$的展开式中x-4的系数记为an,则$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$等于(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.2015D.2016

分析 由条件利用二项式展开式的通项公式求得an,再利用裂项法进行求和,可得要求式子的值.

解答 解:将${({1-\frac{1}{x^2}})^n}(n∈{N_+})$的展开式中x-4的系数记为an,∴an=${C}_{n}^{2}$=$\frac{n(n-1)}{2}$,
∴则$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$=$\frac{2}{1•2}$+$\frac{2}{2•3}$+$\frac{2}{3•4}$+••+$\frac{2}{2015•2016}$=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2015}$-$\frac{1}{2016}$)=2•$\frac{2015}{2016}$=$\frac{2015}{1008}$,
故选:B.

点评 本题主要考查二项式展开式的通项公式,用裂项法进行求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知P是直线l:x+my+4=0上一动点,PA、PB是圆C:x2+y2-2x=0的两条切线,切点分别为A、B,若四边形PACB的最小面积为2,则实数m=(  )
A.2或-2B.2C.-2D.无数个取值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知曲线$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k+1}$=1(k∈R)表示焦点在y轴上的椭圆,则k的取值范围是(  )
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右顶点分别为A、B,左右焦点分别为F1、F2,若|AF1|,|F1F2|,|F1B|成等差数列,则此椭圆的离心率为(  )
A.$\sqrt{5}-2$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(x-a)ex+(a-1)x+a,a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)设g(x)=f′(x),证明:当a>2时,函数g(x)在(0,+∞)上仅有一个零点;
(Ⅲ)若对任意的x∈[0,2],恒有f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知焦点在x轴上的椭圆过点A(-3,0),且离心率e=$\frac{{\sqrt{5}}}{3}$,则椭圆的标准方程是(  )
A.$\frac{x^2}{9}+\frac{y^2}{{\frac{81}{4}}}$=1B.$\frac{x^2}{4}+\frac{y^2}{9}$=1C.$\frac{x^2}{{\frac{81}{4}}}+\frac{y^2}{9}$=1D.$\frac{x^2}{9}+\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=$\sqrt{2}$b,过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.
(1)求椭圆C的方程;
(2)若直线l1的斜率为-1,求△PMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式x2-ax+b<0的解集为{x|1<x<2},则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在(0,+∞)的函数f(x)非负实数,且满足xf′(x)<f(x),若m,n∈(0,+∞)且m<n,则必有(  )
A.nf(n)<mf(m)B.nf(m)<mf(n)C.mf(m)<nf(n)D.mf(n)<nf(m)

查看答案和解析>>

同步练习册答案