精英家教网 > 高中数学 > 题目详情
13.设抛物线x2=2py(p>0)的焦点F,过焦点F作y轴的垂线,交抛物线于A、B两点,点M(0,-$\frac{p}{2}$),Q为抛物线上异于A、B的任意一点,经过点Q作抛物线的切线,记为l,l与MA、MB分别交于D、E.
(1)判断直线MA与抛物线的位置关系并证明;
(2)求$\frac{{S}_{△QAB}}{{S}_{△MDE}}$.

分析 (1)条件中给出M(0,-$\frac{p}{2}$)只需求出A,B两点坐标,而A和B是抛物线上的点,进而用两点式确定直线方程,可联立方程,化简得一元二次方程,求得△=0,即可证明直线与抛物线相切;
(2)S△ABQ=$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{2p}$,求得D和E点坐标,求得丨DE丨,由点到直线的距离公式d=$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{2\sqrt{{x}_{0}^{2}+{p}^{2}}}$,S△MDE=$\frac{1}{2}$$\sqrt{{x}_{0}^{2}+{p}^{2}}$•$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{2\sqrt{{x}_{0}^{2}+{p}^{2}}}$=$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{4}$,
即可求得$\frac{{S}_{△QAB}}{{S}_{△MDE}}$的值.

解答 解:(1)直线MA与抛物线相切,
证明:由yA=yB=$\frac{p}{2}$,可知:xA=-p,xB=p,
∴kMA=-1,kMB=1,
lAM:y=-x-$\frac{p}{2}$,lBM:y=x-$\frac{p}{2}$,
∴$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=-x-\frac{p}{2}}\end{array}\right.$,整理得:x2+2px+p2=0,
∴△=0,
∴直线AM与抛物线相切,同理,直线BM与抛物线相切;

(2)设Q(x0,y0),切线l:y=$\frac{{x}_{0}}{p}$x-$\frac{{x}_{0}^{2}}{2p}$,
S△ABQ=$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{2p}$,lAM:y=-x-$\frac{p}{2}$,
$\left\{\begin{array}{l}{y=\frac{{x}_{0}}{p}x-\frac{{x}_{0}^{2}}{{p}^{2}}}\\{y=-x-\frac{p}{2}}\end{array}\right.$,D($\frac{{x}_{0}-p}{2}$,$\frac{-{x}_{0}}{2}$),同理E($\frac{{x}_{0}+p}{2}$,$\frac{{x}_{0}}{2}$),
丨DE丨=$\sqrt{{p}^{2}+{x}_{0}^{2}}$,M到直线DE的距离d=$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{2\sqrt{{x}_{0}^{2}+{p}^{2}}}$,
S△MDE=$\frac{1}{2}$$\sqrt{{x}_{0}^{2}+{p}^{2}}$•$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{2\sqrt{{x}_{0}^{2}+{p}^{2}}}$=$\frac{丨{x}_{0}^{2}-{p}^{2}丨}{4}$,
∴$\frac{{S}_{△QAB}}{{S}_{△MDE}}$=2.

点评 本题考查直线与抛物线的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知点P(x,y)在椭圆$\frac{x^2}{4}+{y^2}=1$上,则$\frac{3}{4}{x^2}+2x-{y^2}$的最大值为(  )
A.-2B.-1C.2D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDEF中,四边形ABCD是正方形,H为BC中点,且FH⊥平面ABCD,EF∥AB,∠BFC=90°,AB=2,EF=1.
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求二面角B-DE-C的大小;
(Ⅲ)求四面体B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知角的终边经过点P(-4,3),求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin27°cos63°+cos27°sin117°=(  )
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列三个命题中真命题的个数是(  )
(1)命题“?x∈R,sinx≤1”的否定是“?x∈R,sinx>1”
(2)“若am2<bm2,则a<b”的逆命题为真命题
(3)命题p:?x∈[1,+∞),lgx≥0,命题q:?x∈R,x2+x+1<0,则p∨q为真命题.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从0到9这10个数字中任取三个数组成没有重复数字的三位数,共有(  )个.
A.720B.360C.72D.648

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数f(x)=x2+ax+b2,若a,b在区间[0,2]内等可能取值,求f(x)=0有实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点M的直角坐标为(-1,-$\sqrt{3}$,3),则它的柱坐标是(  )
A.(2,$\frac{π}{3}$,3)B.(2,$\frac{2π}{3}$,3)C.(2,$\frac{4π}{3}$,3)D.(2,$\frac{5π}{3}$,3)

查看答案和解析>>

同步练习册答案