精英家教网 > 高中数学 > 题目详情
5.表面积为24的正方体的顶点都在同一球面上,则该球的体积为(  )
A.12πB.$4\sqrt{3}π$C.$\frac{8}{3}$πD.$\frac{4\sqrt{3}}{3}$π

分析 由正方体的表面积为24,得到正方体的棱长,求出正方体的体对角线的长,就是球的直径,求出球的体积即可.

解答 解:表面积为24的正方体的棱长为:2,正方体的体对角线的长为:2$\sqrt{3}$,就是球的直径,
∴球的体积为:S=$\frac{4}{3}$π($\sqrt{3}$)3=4$\sqrt{3}$π.
故选:C.

点评 考查球的体积表面积,正方体的外接球的知识,仔细分析,找出二者之间的关系:正方体的对角线就是球的直径,是解题关键,本题考查转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}{x-y≥-3}\\{2x+y≤3}\\{y≥1}\end{array}\right.$,则z=x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若将函数f(x)=$|sin(ωx-\frac{π}{8})|(ω>0)$的图象向左平移$\frac{π}{12}$个单位后,所得图象对应的函数为偶函数,则ω的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设P,Q分别为直线$\left\{\begin{array}{l}x=t\\ y=6-2t\end{array}\right.$(t为参数)和曲线C:$\left\{\begin{array}{l}x=1+\sqrt{5}cosθ\\ y=-2+\sqrt{5}sinθ\end{array}\right.$(θ为参数)的点,则|PQ|的最小值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入g(n)是生产时间n个月的二次函数g(n)=n2+kn(k是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.
(1)求前8个月的累计生产净收入g(8)的值;
(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.学校拟安排六位老师至5 月1日至5月3日值班,要求每人值班一天,每天安排两人,若六位老师中王老师不能值5月2日,李老师不能值5月3日的班,则满足此要求的概率为$\frac{7}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|2x-1|+|x+a|.
(Ⅰ)当a=1时,求y=f(x)图象与直线y=3围成区域的面积;
(Ⅱ)若f(x)的最小值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆C:(x-a)2+(y-b)2=2,圆心C在曲线y=$\frac{1}{x}$(x∈[1,2])上.则ab=1,直线l:x+2y=0被圆C所截得的长度的取值范围是[$\frac{2\sqrt{5}}{5}$,$\frac{2\sqrt{10}}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长为(  )
A.五寸B.二尺五寸C.三尺五寸D.一丈二尺五寸

查看答案和解析>>

同步练习册答案