精英家教网 > 高中数学 > 题目详情
16.若将函数f(x)=$|sin(ωx-\frac{π}{8})|(ω>0)$的图象向左平移$\frac{π}{12}$个单位后,所得图象对应的函数为偶函数,则ω的最小值是$\frac{3}{2}$.

分析 由函数y=Asin(ωx+φ)的图象变换可得f(x),由$\frac{ωπ}{12}$-$\frac{π}{8}$=$\frac{kπ}{2}$时,即ω=6k+$\frac{3}{2}$时f(x)为偶函数,从而可求实数ω的最小值.

解答 解:∵将函数f(x)=$|sin(ωx-\frac{π}{8})|(ω>0)$的图象向左平移$\frac{π}{12}$个单位后,所得图象对应的函数解析式为:
f(x)=|sin[ω(x+$\frac{π}{12}$)-$\frac{π}{8}$]|=|sin[ωx+($\frac{ωπ}{12}$-$\frac{π}{8}$)]|,
∵当 $\frac{ωπ}{12}$-$\frac{π}{8}$=$\frac{kπ}{2}$时,即ω=6k+$\frac{3}{2}$时,
f(x)=|sin(ωx+$\frac{kπ}{2}$)|=|-cos(ωx)|=|cos(ωx)|,f(x)为偶函数.
∵ω>0,
∴当k=0时,ω有最小值$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,三角函数的图象与性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若实数x0满足p(x0)=x0,则称x=x0为函数p(x)的不动点.
(1)求函数f(x)=lnx+1的不动点;
(2)设函数g(x)=ax3+bx2+cx+3,其中a,b,c为实数.
①若a=0时,存在一个实数${x_0}∈[\frac{1}{2},2]$,使得x=x0既是g(x)的不动点,又是g'(x)的不动点(g'(x)是函数g(x)的导函数),求实数b的取值范围;
②令h(x)=g'(x)(a≠0),若存在实数m,使m,h(m),h(h(m)),h(h(h(m)))成各项都为正数的等比数列,求证:函数h(x)存在不动点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x)=x2+$\frac{a}{x}$,下列结论正确的是(  )
A.?a∈R,函数f(x)是奇函数B.?a∈R,函数f(x)是偶函数
C.?a>0,函数f(x)在(-∞,0)上是减函数D.?a>0,函数f(x)在(0,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点M(a,b)与点N(0,-1)在直线3x-4y+5=0的两侧,给出以下结论:
①3a-4b+5>0;
②当a>0时,a+b有最小值,无最大值;
③a2+b2>1;
④当a>0且a≠1时,$\frac{b+1}{a-1}$的取值范围是(-∞,-$\frac{9}{4}$)∪($\frac{3}{4}$,+∞).
正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数$f(x)=\left\{{\begin{array}{l}{-x+3a(x<0)}\\{{a^x}+1(x≥0)}\end{array}}\right.$(a>0,且a≠1)是R上的减函数,则a的取值范围是$[\frac{2}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设i为虚数单位,复数$z=\frac{1-2i}{2+i}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x∈R,用[x]表示不超过x的最大整数(如[2.32]=2,[-4.76]=-5),对于给定的n∈N*,定义C${\;}_{n}^{x}$=$\frac{n(n-1)…(n-[x]+1)}{x(x-1)…(x-[x]+1)}$,其中x∈[1,+∞),则当$x∈[{\frac{3}{2}\;,\;3})$时,函数f(x)=C${\;}_{10}^{x}$的值域是$({5\;,\;\frac{20}{3}}]∪({15\;,\;45}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.表面积为24的正方体的顶点都在同一球面上,则该球的体积为(  )
A.12πB.$4\sqrt{3}π$C.$\frac{8}{3}$πD.$\frac{4\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=Asin(ωx+ϕ)$(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示,则其在区间$[\frac{π}{3},2π]$上的单调递减区间是(  )
A.$[\frac{π}{3},π]$和$[\frac{11π}{6},2π]$B.$[\frac{π}{3},\frac{5π}{6}]$和$[\frac{4π}{3},\frac{11π}{6}]$
C.$[\frac{π}{3},\frac{5π}{6}]$和$[\frac{11π}{6},2π]$D.$[\frac{π}{3},π]$和$[\frac{4π}{3},\frac{11π}{6}]$

查看答案和解析>>

同步练习册答案