精英家教网 > 高中数学 > 题目详情
若x、y满足不等式组
x-y+5≥0
x≤3
x+y-k≥0
时,恒有2x+4y≥-6,则k的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:由目标函数z=2x+4y的最小值是-6,我们可以画出满足条件
x-y+5≥0
x≤3
x+y-k≥0
的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程,解之即可得到k的取值,进一步得到k的范围.
解答: 解:画出x,y满足的可行域
x-y+5≥0
x≤3
x+y-k≥0
如下图:

由于目标函数z=2x+4y的最小值是-6,
可得直线x=3与直线-6=2x+4y的交点A(3,-3),
使目标函数z=2x+4y取得最小值,
将x=3,y=-3代入x+y-k=0得:
k=0,
∴2x+4y≥-6,则k的取值范围是k≥0.
故答案为:k≥0.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F,点E(
a2
c
,0)(c为椭圆的半焦距)在x轴上,若椭圆的离心率e=
2
2
,且|EF|=1.
(1)求椭圆方程;
(2)若过F的直线交椭圆与A,B两点,且
OA
+
OB
与向量
m
=(4,-
2
)共线(其中O为坐标原点),求证:
OA
OB
=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2+4
1-x
+lg(3x+1)的定义域为(  )
A、(-
1
3
,+∞)
B、(-∞,-
1
3
C、(-
1
3
,1)
D、(-
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)函数f(x)=2xln(x-2)-3只有一个零点;
(2)若
a
b
不共线,则
a
+
b
a
-
b
不共线;
(3)若非零平面向量
a
b
c
两两所成的夹角均相等,则夹角为120°;
(4)若数列{an}的前n项的和Sn=2n+1-1,则数列{an}是等比数列;
(5)函数y=2x的图象经过一定的平移可以得到函数y=3•2x-1的图象.
其中,所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算a⊕b=a2-ab-b2,则sin
π
8
⊕cos
π
8
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

①(极坐标与参数方程选做题)已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
x=
2
2
t+1
y=
2
2
t
(t为参数),则直线l与曲线C相交所成的弦的弦长为
 

②(不等式选做题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0且a≠1,函数y=a2x+2ax+1在[-1,1]的最大值是14,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知∠B=30°,△ABC的面积为
3
2

(Ⅰ)当a,b,c成等差数列时,求b;
(Ⅱ)求AC边上的中线BD的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x+1)=3x-1,则f(x)的解析式为
 

查看答案和解析>>

同步练习册答案