精英家教网 > 高中数学 > 题目详情
设a>0且a≠1,函数y=a2x+2ax+1在[-1,1]的最大值是14,求a的值.
考点:指数函数综合题
专题:函数的性质及应用
分析:令t=ax(a>0,a≠1),则原函数化为y=t2+2t-1=(t+1)2-2(t>0),分类①当0<a<1时,②当a>1时,利用单调性求解即可.
解答: 解:令t=ax(a>0,a≠1),则原函数化为y=t2+2t-1=(t+1)2-2(t>0)
①当0<a<1时,x∈[-1,1],t=ax∈[a,
1
a
],
此时f(x)在[a,
1
a
]上为增函数,所以f(x)max=f(
1
a
)=(
1
a
+1)2-2=1     
所以a=-
1
5
(舍去)或a=
1
3

,x∈[-1,1],t=ax∈[a,
1
a
],此时f(t)在[
1
a
,a]上为增函数,所以f(x)max=f(a)=(a+1)2-2=14,
所以a=-5(舍去)或a=3,
综上a=
1
3
或a=3.
点评:本题考查了指数函数的性质的应用,难度较大,属于中档题,注意复合函数的单调性的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数 f(x)=
1
3
x3-(2a+1)x2
+3a(a+2)x+1,a∈R.
(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)当a=-1时,求函数y=f(x)在[0,4]上的最大值和最小值;
(3)当函数y=f′(x)在(0,4)上有唯一的零点时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数g(x)=a(x-1)3+b(a≠0)在点(0,b-a)处的切线与x-y-1=0平行,且g(2)=
2
3
,若g'(x)为g(x)的导函数,设函数f(x)=
g′(x)
x

(1)求a、b的值及函数f(x)的解析式;
(2)如果关于x的方程f(|2x-1|)+t•(
4
|2x-1|
-1)=0有三个相异的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足不等式组
x-y+5≥0
x≤3
x+y-k≥0
时,恒有2x+4y≥-6,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的体积与全面积之比等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
,x>1
2|x|,x≤1
,若关于x的方程f(x)=k有3个不同的实根,则实数k的取值范围为(  )
A、[1,+∞)
B、(0,+∞)
C、(0,2)
D、(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x>2x,命题q:?x∈R,x2>0,则(  )
A、命题p∨q是假命题
B、命题p∧q是真命题
C、命题p∧(¬q)是真命题
D、命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AC与BD交于点M,则
AB
+
CM
=(  )
A、
MB
B、
BM
C、
DB
D、
BD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(ω>0,A>0,φ∈(0,
π
2
))的部分图象如图所示,其中点P是图象的一个最高点.
(1)求函数f(x)的解析式;
(2)求函数f(-x)的单调增区间;
(3)求函数图象的对称中心和对称轴;
(4)解不等式f(x)≥
3

(5)函数f(x)的图象可由y=sinx的图象经过怎样变换得到?

查看答案和解析>>

同步练习册答案