精英家教网 > 高中数学 > 题目详情
19.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一点M关于渐进线的对称点恰为右焦点F2,则该双曲线的离心率为$\sqrt{5}$.

分析 设M(m,n),右焦点F2(c,0),双曲线的一条渐近线方程为y=-$\frac{b}{a}$x,运用两直线垂直的条件:斜率之积为-1,以及中点坐标公式,解方程可得m,n,代入双曲线的方程,化简整理,结合双曲线的基本量和离心率公式,计算即可得到所求值.

解答 解:设M(m,n),右焦点F2(c,0),
双曲线的一条渐近线方程为y=-$\frac{b}{a}$x,
由题意可得-$\frac{b}{a}$•$\frac{n-0}{m-c}$=-1①
$\frac{1}{2}$n=-$\frac{b}{a}$•$\frac{m+c}{2}$②
由①②解得m=$\frac{{a}^{2}-{b}^{2}}{c}$,n=-$\frac{2ab}{c}$,
将M($\frac{{a}^{2}-{b}^{2}}{c}$,-$\frac{2ab}{c}$)代入双曲线的方程,可得:
$\frac{({a}^{2}-{b}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}{b}^{2}}{{c}^{2}{b}^{2}}$=1,由b2=c2-a2
化为(2a2-c22-4a4=a2c2
即为c2=5a2
可得e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查双曲线的离心率的求法,注意运用渐近线方程和点关于直线对称的特点,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知x1、x2是方程x2+mx+3=0(m∈R)的两虚根,则|x1|+|x2|=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+lnx(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(2)求f(x)的单调区间;
(3)若对任意x∈(0,+∞),均有f(x)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$)
(Ⅰ)求|3$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅱ)若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知角α(0°≤α<360°)终边上一点的坐标为(sin150°,cos150°),则α=(  )
A.150°B.135°C.300°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知i是虚数单位,复数$\frac{5i}{1-2i}$的虚部为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为偶数且点数之差的绝对值为2},则P(A)=(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,a=2,b=6,B=60°,则c=$1+\sqrt{33}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司对新招聘的员工张某进行综合能力测试,共设置了A、B、C三个测试项目.假定张某通过项目A的概率为$\frac{1}{2}$,通过项目B、C概率均为a(0<a<1),且这三个测试项目能否通过相互独立.
(Ⅰ)用随机变量X表示张某在测试中通过的项目个数,当$a=\frac{1}{3}$时,求X的概率分布和数学期望;
(Ⅱ)若张某通过一个项目的概率最大,求实数a的取值范围.

查看答案和解析>>

同步练习册答案