精英家教网 > 高中数学 > 题目详情
7.在锐角△ABC中,A,B,C为三角形的三个内角,已知A>B>C,则cosB取值范围为(0,$\frac{\sqrt{2}}{2}$).

分析 锐角△ABC中,由A>B>C,B+C>90°,先求得B的范围,从而求得cosB取值范围.

解答 解:在锐角△ABC中,∵A>B>C,∴B+C>90°,∴45°<B<90°,
则cosB取值范围为(0,$\frac{\sqrt{2}}{2}$),
故答案为:(0,$\frac{\sqrt{2}}{2}$).

点评 本题主要考查锐角三角形的性质,余弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图所示的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=(  )cm.
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.平行四边形ABCD中,点P在边AB上(不含端点),$\overrightarrow{AP}=λ\overrightarrow{AB}$.若|$\overrightarrow{AP}$|=2,|$\overrightarrow{AD}$|=1,∠BAD=60°且$\overrightarrow{AP}•\overrightarrow{CP}$=-3.则λ=(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,P1(x1,y1)、P2(x2,y2),…Pn(xn,yn)在函数y=$\frac{4}{x}$(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3…△PnAn-1An…都是等腰直角三角形,斜边OA1,A1A2…An-1An,都在x轴上,则y1+y2+…y10=$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F为抛物线y2=2px(p>0)的焦点,过F的直线l交抛物线于A(x1,y1)、B(x2,y2),O为坐标原点,若△OAB的面积为p2,则y12+y22的值为(  )
A.10p2B.12p2C.14p2D.16p2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若过点P(-3,3)且倾斜角为$\frac{5}{6}$π的直线交曲线$\left\{\begin{array}{l}{x=2cosφ}\\{y=3sinφ}\end{array}\right.$于A、B两点,则|AP|•|PB|=$\frac{324}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在极坐标系中,已知两点A(3,-$\frac{π}{3}$),B(1,$\frac{2π}{3}$),求A、B两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}a{x^3}+({a-2})x+c$的图象如图所示.
(1)求函数y=f(x)的解析式;
(2)已知f′(x)是函数f(x)的导函数.?若数列{an}的通项${a_n}=\frac{1}{{f'({n+1})}}$,求其前n项和Sn;?若$g(x)=\frac{kf'(x)}{x}-2lnx$在其定义域内为增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}中,a3a5+2a4a6+a5a7=49,则a4+a6=(  )
A.14B.±7C.7D.-14

查看答案和解析>>

同步练习册答案