精英家教网 > 高中数学 > 题目详情
如图:已知BC是半径为1的半圆O的直径,A是半圆周上不同于B,C的点,F为弧AC的中点.在梯形ACDE中,DE∥AC且AC=2DE,平面ACDE⊥平面ABC.求证:
(1)直线AB⊥平面ACDE;    
(2)直线BE∥平面DOF.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(1)在半圆中,AB⊥AC,而平面ACDE⊥平面ABC,且交线为AC,故由两平面垂直的性质定理可知:AB⊥平面ACDE;
(2)设OF∩AC=M,连接DM,OA,由F为弧AC的中点,得M为AC的中点,所以DE∥
1
2
AC,得四边形AMDE为平行四边形,从而DM∥AE,DM∥平面ABE;由OM∥AB得,OM∥平面ABE;由两个平面平行的判定定理,可知平面OFD∥平面BAE,即可证明直线BE∥平面DOF.
解答: 证明:(1)∵BC是半圆O的直径,A是半圆周上不同于B,C的点AC
∴∠BAC=90°,∴AC⊥AB
∵平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,AB?平面ABC
∴由两个平面垂直的性质得,AB⊥平面ACDE;
(2)如图,设OF∩AC=M,连接DM,OA
∵F为弧AC的中点,
∴M为AC的中点.
∵AC=2DE,DE∥AC
∴DE∥AM,DE=AM
∴四边形AMDE为平行四边形.
∴DM∥AE
∵DM?平面ABE,AE?平面ABE
∴DM∥平面ABE
∵O为BC中点
∴OM为三角形ABC的中位线
∴OM∥AB
∵OM?平面ABE,AB?平面ABE
∴OM∥平面ABE
∵OM?平面OFD,DM?平面OFD,OM∩DM=M
∴由两个平面平行的判定定理可知,平面OFD∥平面ABE,
∵BE?平面ABE,
∴直线BE∥平面DOF.
点评:本题主要考查了两个平面垂直的性质定理及判定定理、两个平面平行的判定定理,体现了线线、线面、面面之间关系的相互转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,且a,b是方程x2-2
5
x+4=0的两个根,且2cos(A+B)=1,求:
(1)∠C的度数;   
(2)边c的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:关于x的不等式 x2+2ax+4>0对?x∈R恒成立;命题q:函数f(x)=-(5-2a)x是减函数,若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
1
2
+cosα,且α∈(0,
π
2
),求
cos2α
sin(α-
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形EFGH为空间四边形ABCD的一个截面,四边形EFGH为平行四边形.

(1)求证:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,AB,CD所成的角为60°,求四边形EFGH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=-2sin2x+2sinx+1,x∈[
π
6
6
]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,1),B(5,-2),C(3,4),O是坐标原点,P是直线OA上的一个动点
(1)求证:△ABC是钝角三角形;
(2)试确定点P的位置,使
PB
PC
取得最小值,并求此时cos∠BPC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α∩平面β=L,点A∈α,点B∈β,A∉L,B∉L.求证L与AB是异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有
 
种.

查看答案和解析>>

同步练习册答案