精英家教网 > 高中数学 > 题目详情
已知sinα=
1
2
+cosα,且α∈(0,
π
2
),求
cos2α
sin(α-
π
4
)
的值.
考点:二倍角的余弦,两角和与差的正弦函数
专题:三角函数的求值
分析:由条件求得sin2α的值,进而求得sin α+cosα的值,花简要求的式子为-
2
(sinα+cosα),从而得到答案.
解答: 解:由题意知sin α-cosα=
1
2
,两边平方可得sin2α=
3
4

所以(sin α+cos α)2=1+sin2α=
7
4

又α∈(0,
π
2
),所以sin α+cosα=
7
2

cos2α
sin(α-
π
4
)
=
cos2α-sin2α
2
2
(sinα-cosα)
=-
2
(sinα+cosα)=-
14
2
点评:本题主要考查两角和的正弦公式,二倍角公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b满足a+b>0,b<0,则a,b,-a,-b的大小关系是(  )
A、a>-b>b>-a
B、a>b>-b>-a
C、a>-b>-a>b
D、a>b>-a>-b

查看答案和解析>>

科目:高中数学 来源: 题型:

请画出函数y=丨x2-2丨的图象,并求单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在递增等差数列{an}中,前n项和为Sn,且a1a3=5,a1+a3=6,
(1)求数列{an}的通项公式;
(2)若bn=Sn-6an,求数列{bn}的最小值以及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:正方形ABCD与正方形ABEF不共面,N、M分别在AE和BD上,AN=DM.
求证:MN∥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD是边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(Ⅱ)若PA=AB,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知BC是半径为1的半圆O的直径,A是半圆周上不同于B,C的点,F为弧AC的中点.在梯形ACDE中,DE∥AC且AC=2DE,平面ACDE⊥平面ABC.求证:
(1)直线AB⊥平面ACDE;    
(2)直线BE∥平面DOF.

查看答案和解析>>

科目:高中数学 来源: 题型:

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:
患心肺疾病 不患心肺疾病 合计
5
10
合计 50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+c+b+d).

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有5个黑球和3个白球,从中任取2个球,则其中至少有1个黑球的概率是
 

查看答案和解析>>

同步练习册答案