精英家教网 > 高中数学 > 题目详情
14.演绎推理“①三角函数是周期函数;②y=tanx是三角函数;③y=tanx是周期函数”中的小前提是(  )
A.B.C.D.①和②

分析 根据“三段论”:“大前提”→“小前提”⇒“结论”可知结论.

解答 解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:
②三角函数是周期函数是“大前提”;
③y=tanx是三角函数是“小前提”;
①y=tanx是周期函数是“结论”;
故选:B.

点评 本题考查的知识点是演绎推理的基本方法:大前提一定是一个一般性的结论,小前提表示从属关系,结论是特殊性结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.己知数列{an}与{bn}都是等差数列,且$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{b}_{n}}$=3,则$\underset{lim}{n→∞}$$\frac{{a}_{1}+{a}_{2}+…+{a}_{2n}}{{b}_{1}+{b}_{2}+…+{b}_{3n}}$的值为(  )
A.$\frac{9}{4}$B.$\frac{4}{3}$C.$\frac{4}{3}$或2D.$\frac{4}{3}$或$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ax|log2x|-1有两个不同的零点,则实数a的取值范围是(  )
A.(1,10)B.(1,+∞)C.(0,1)D.(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知锐角三角形的边长分别2、3、x,则x的取值范围是(  )
A.($\sqrt{5}$,$\sqrt{13}$)B.(1,5)C.(1,$\sqrt{5}$)D.($\sqrt{13}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.读如图的流程图,若输入的值为-5时,输出的结果是(  )
A.2B.-10C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等差数列,且公差d>0,数列{bn}为等比数列,若a1=b1>0,a5=b5,则(  )
A.a9>b9B.a9=b9
C.a9<b9D.a9与b9大小无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角为锐角,对t∈R,|$\overrightarrow{a}$-t$\overrightarrow{b}$|的取值范围是[$\frac{\sqrt{3}}{2}$,+∞),若向量$\overrightarrow{c}$满足($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow{b}$)=0,则|$\overrightarrow{c}$|的最小值为$\frac{\sqrt{7}-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用数学归纳法证明不等式1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}$>$\frac{n}{2}$(n∈N*),则n=k+1与n=k相比,不等式左边增加的项数是(  )
A.1B.k-1C.kD.2k

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=x3-3x2的极小值是-4.

查看答案和解析>>

同步练习册答案