精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x2-4ln(x+1)
(1)求函数f(x)的单调区间;
(2)求f(x)的极值.

分析 (1)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)结合函数的单调性求出函数的极值即可.

解答 解:(1)函数f(x)的定义域是(-1,+∞),
f′(x)=2x-$\frac{4}{x+1}$=$\frac{{2x}^{2}+x-4}{x+1}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:-1<x<1,
∴f(x)在(-1,1)递减,在(1,+∞)递增;
(2)由(1)得:f(x)极小值=f(1)=1-4ln2,
无极大值.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+b|x-1|,其中a,b∈(-4,4)且a≠0.当a∈(0,4),b=1时,求函数f(x)在[0,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{a}$,$\overrightarrow{b}$不共线的两个向量,若命题p:$\overrightarrow{a}•\overrightarrow{b}$>0,命题q:$\overrightarrow{a},\overrightarrow{b}$夹角是锐角,则命题p是命题q成立的   (  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足:a1=2,(4an+1-5)(4an-1)=-3,则$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+$\frac{1}{{a}_{3}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{3}{2}$(3n-1)-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的函数f(x)满足:f(1)=$\frac{10}{3}$,且对于任意实数x,y,总有f(x)f(y)=f(x+y)+f(x-y).若数列{an}满足an=3f(n)-f(n-1),n∈N*
(1)求数列{an}的通项公式;
(2)令bn=$\frac{24{a}_{n}}{(3{a}_{n}-8)^{2}}$,n∈N*,Sn是数列{bn}的前n项和,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i为虚数单位,复数z=a+i(a<0),且|z|=$\sqrt{10}$,则复数z的实部为(  )
A.3B.-3C.-1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}是各项为正数的等比数列,a1+a2=20,a3=64,数列{bn}的前n项和为Sn,bn=log2an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:对任意的n∈N*,数列{$\frac{{S}_{n}}{{a}_{n}}$}为递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数$\frac{1}{1+i}$的虚部是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}i$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见表.规定:A、B、C三级为合格等级,D为不合格等级.
百分制85以及以上70分到84分60分到69分60分以下
等级ABCD
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(I)求n和频率分布直方图中的x,y的值;
(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案