精英家教网 > 高中数学 > 题目详情
10.在各项为正数的等比数列{an}中,已知a3+a4=11a2a4,且前2n项的和等于它的前2n项中偶数项之和的11倍,则数列{an}的通项公式an=$\frac{1}{1{0}^{n-2}}$.

分析 由前2n项的和等于它的前2n项中偶数项之和的11倍,得到前两项的关系,设a1=m,比例为k,求出k的值,进而求出m的值,即可确定出数列的通项公式.

解答 解:由前2n项的和等于它的前2n项中偶数项之和的11倍,得:a1+a2=11a2,即a2=0.1a1
设a1=m,比例为k,可得k=0.1,
则有a3+a4=m(k2+k3)=11a2a4=11m2k4,即1+k=11mk2
∴1.1=11m×0.01,即m=10,
则an=10×0.1n-1=$\frac{1}{1{0}^{n-2}}$,
故答案为:$\frac{1}{1{0}^{n-2}}$

点评 此题考查了等比数列的通项公式,熟练掌握等比数列的通项公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.不等式|2x+3|<1的解集为(  )
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知P为抛物线y2=4x上的动点,直线l1:x=-1,直线l2:x+y+3=0,则P点到直线l1,l2距离之和的最小值为(  )
A.2$\sqrt{2}$B.4C.$\sqrt{2}$D.$\frac{3}{2}$$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2klnx,g(x)=x2-2kx(k∈R)
(1)设h(x)=f(x)-g(x),试讨论函数h(x)的单调性
(2)设k>0,若函数y=f(x)的图象与y=g(x)的图象在区间(0,+∞)上有唯一交点,试求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{x}{1+|x|}$(x∈R)时,则下列所有正确命题的序号是①②③.
①若任意x∈R,则等式f(-x)+f(x)=0恒成立;
②存在m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
③任意x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
④存在k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x||x-2|<1,x∈R},集合B=Z,则A∩B={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若数列{an}的所有项都是正数,且$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=n2+3n(n∈N*),则$\underset{lim}{n→∞}$$\frac{1}{{n}^{2}}$($\frac{{a}_{1}}{2}+\frac{{a}_{2}}{3}+…+\frac{{a}_{n}}{n+1}$)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{1}{2}$x2+ex-xex
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点P是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上的动点,F1,F2为椭圆的左右焦点,焦距为2c,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且MF1⊥MP,则OM的取值范围为(0,c).

查看答案和解析>>

同步练习册答案