分析 (1)利用数列递推关系即可得出.
(2)${c_{n+1}}={a_{c_n}}+{2^n}$,即${c_{n+1}}=2{c_n}+1+{2^n}$,假设存在实数λ,使得数列$\left\{{\frac{{{c_n}+λ}}{2^n}}\right\}$为等差数列.又c1=3,c2=9,c3=23,$\frac{3+λ}{2}$,$\frac{9+λ}{4}$,$\frac{23+λ}{8}$成等差数列.解得λ,再利用等差数列的定义即可得出.
解答 解:(1)n=1时,a1=S1=3,
n≥2时,an=Sn-Sn-1=2n+1,
∴an=2n+1.
(2)${c_{n+1}}={a_{c_n}}+{2^n}$,即${c_{n+1}}=2{c_n}+1+{2^n}$,
假设存在实数λ,使得数列$\left\{{\frac{{{c_n}+λ}}{2^n}}\right\}$为等差数列.
又c1=3,c2=2c1+1+2=9,c3=2c2+1+22=23,
$\frac{3+λ}{2}$,$\frac{9+λ}{4}$,$\frac{23+λ}{8}$成等差数列.
∴$\frac{3+λ}{2}$+$\frac{23+λ}{8}$=2×$\frac{9+λ}{4}$,解得λ=1.
则$\frac{{c}_{n+1}+1}{{2}^{n+1}}$-$\frac{{c}_{n}+1}{{2}^{n}}$=$\frac{{c}_{n+1}+1-2({c}_{n}+1)}{2×{2}^{n}}$=$\frac{{c}_{n+1}-2{c}_{n}-1}{2×{2}^{n}}$=$\frac{1+{2}^{n}-1}{2×{2}^{n}}$=$\frac{1}{2}$.
∴λ=1时,数列$\left\{{\frac{{{c_n}+λ}}{2^n}}\right\}$为等差数列.
点评 本题考查了数列递推关系、等差数列的定义域通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{8}{9}$ | C. | $\frac{5}{11}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com