精英家教网 > 高中数学 > 题目详情
20.用黑白两种颜色随机地染如图所示表格中6个格子,每个格子染一种颜色,则有64个不同的染色方法,出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子的概率为$\frac{5}{16}$.

分析 用黑白两种颜色随机地染如图所示表格中6个格子,每个格子都有2种染色方法,由此利用乘法原理能求出不同的染色方法种数,再利用分类讨论方法求出出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子,包含的基本事件个数,由此能求出不管数到哪个格子,总有黑色格子不少于白色格子的概率.

解答 解:用黑白两种颜色随机地染如图所示表格中6个格子,
每个格子染一种颜色,则有:26=64个不同的染色方法,
出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子,
包含的基本事件有:全染黑色,有1种方法,
第一个格子染黑色,另外五个格子中有1个格染白色,剩余的都染黑色,有5种方法,
第一个格子染黑色,另外五个格子中有2个格染白色,剩余的都染黑色,有8种方法,
第一个格子染黑色,另外五个格子中有3个格染白色,剩余的都染黑色,有6种方法,
∴出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子,
包含的基本事件有:1+5+8+6=20种,
∴出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子的概率为:
p=$\frac{20}{64}$=$\frac{5}{16}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\frac{x}{e^x}$,若不等式f(x)-a(x+1)>0的解集中有且仅有一个整数,则实数a的取值范围是(  )
A.$[{\frac{1}{e^2},\frac{1}{e}}]$B.$[{\frac{1}{e^2},\frac{1}{e}})$C.$[{\frac{2}{{3{e^2}}},\frac{1}{2e}}]$D.$[{\frac{2}{{3{e^2}}},\frac{1}{2e}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=xex-ax2(a∈R).
(1)若函数g(x)=$\frac{f(x)}{{e}^{x}}$是奇函数,求实数a的值;
(2)若对任意的实数a,函数h(x)=kx+b(k,b为实常数)的图象与函数f(x)的图象总相切于一个定点.
①求k与b的值;
②对(0,+∞)上的任意实数x1,x2,都有[f(x1)-h(x1)][f(x2)-h(x2)]>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=2sin2ωx+sin2ωx-1(x∈R)满足f(α)=-$\sqrt{2}$,f(β)=0且|α-β|的最小值为$\frac{3π}{4}$,则正数ω的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-a|
(I) 若对x∈[0,4]不等式f(x)≤3恒成立,求实数a的取值范围;
(II) 当a=2时,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给定两个命题p,q,“¬(p∨q)为假”是“p∧q为真”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知${({\frac{5}{x}-\sqrt{x}})^n}$展开式中,只有第3项的二项式系数最大,且展开式中含x2项的系数为a,则$\int_1^{2a}{\frac{{{x^2}+1}}{x}}dx$=$\frac{3}{2}$+ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{2x+y-4≤0}\\{x≥0}\end{array}\right.$,则目标函数z=y-3x的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图△ABC和△ABD均为等腰直角三角形,AD⊥BD,AC⊥BC,平面ABC⊥平面ABD,EC⊥平面ABC,EC=1,$AD=2\sqrt{2}$.
(1)证明:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

同步练习册答案