精英家教网 > 高中数学 > 题目详情
1.已知集合M={0,1,2,3},N={x|y=$\sqrt{2-x}$},则M∩N=(  )
A.{0,1}B.{1,2}C.{0,1,2}D.{2,3,4}

分析 求出N中x的范围确定出N,找出M与N的交集即可.

解答 解:由N中y=$\sqrt{2-x}$,得到2-x≥0,
解得:x≤2,即N={x|x≤2},
∵M={0,1,2,3},
∴M∩N={0,1,2},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)的对称轴x=-2,f(x)的图象被x轴截得的弦长为2$\sqrt{3}$,且满足f(0)=1.
(1)求f(x)的解析式;
(2)若f(($\frac{1}{2}$)x)>k,对x∈[-1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若b<a<0,则下列结果①a+b<ab;②|a|>|b|;③$\frac{1}{b}>\frac{1}{a}$>0;④表达式$\frac{b}{a}+\frac{a}{b}$最小值为2中,正确的结果的序号有①.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数y=-ax与y=$\frac{b}{x}$在(-∞,0)上都是减函数,则y=ax2+bx在(-∞,0)上是(  )
A.减函数B.增函数C.先增后减D.先减后增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若X-B(n,p),且E(X)=6,D(X)=3,则P=(  )
A.$\frac{1}{2}$B.3C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.119和34的最大公约数是17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知2a=3b=6c,若$\frac{a+b}{c}$∈(k,k+1),则整数k的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.给定两个命题,命题p:对?x∈R,不等式ax2+ax+1>0恒成立,命题q:关于x方程x2-x+a=0有实数根;若p∧q为假命题,p∨q为真命题,求实数a范围.

查看答案和解析>>

同步练习册答案